Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 59(6): e5018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736378

RESUMO

This paper covers direct sub-atmospheric pressure ionization mass spectrometry (MS). The discovery, applications, and mechanistic aspects of novel ionization processes for use in MS that are not based on the high-energy input from voltage, laser, and/or high temperature but on sublimation/evaporation within a region linking a higher to lower pressure and modulated by heat and collisions, are discussed, including how this new reality has guided a series of discoveries, instrument developments, and commercialization. A research focus, inter alia, is on how best to understand, improve, and use these novel ionization processes, which convert volatile and nonvolatile compounds from solids (sublimation) or liquids (evaporation) into gas-phase ions for analysis by MS providing reproducible, accurate, sensitive, and prompt results. Our perception on how these unprecedented versus traditional ionization processes/methods relate to each other, how they can be made to coexist on the same mass spectrometer, and an outlook on new and expanded applications (e.g., clinical, portable, fast, safe, and autonomous) is presented, and is based on ST's Opening lecture presentation at the Nordic Mass spectrometry Conference, Geilo, Norway, January 2023. Focus will be on matrix-assisted ionization (MAI) and solvent-assisted ionization (SAI) MS covering the period from 2010 to 2023; a potential paradigm shift in the making.

2.
Proteomics ; 23(21-22): e2200402, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37986684

RESUMO

For decades, molecular biologists have been uncovering the mechanics of biological systems. Efforts to bring their findings together have led to the development of multiple databases and information systems that capture and present pathway information in a computable network format. Concurrently, the advent of modern omics technologies has empowered researchers to systematically profile cellular processes across different modalities. Numerous algorithms, methodologies, and tools have been developed to use prior knowledge networks (PKNs) in the analysis of omics datasets. Interestingly, it has been repeatedly demonstrated that the source of prior knowledge can greatly impact the results of a given analysis. For these methods to be successful it is paramount that their selection of PKNs is amenable to the data type and the computational task they aim to accomplish. Here we present a five-level framework that broadly describes network models in terms of their scope, level of detail, and ability to inform causal predictions. To contextualize this framework, we review a handful of network-based omics analysis methods at each level, while also describing the computational tasks they aim to accomplish.


Assuntos
Algoritmos , Bases de Dados Factuais
3.
Mol Cell Neurosci ; 123: 103783, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208859

RESUMO

Cytosolic PSD-95 interactor (cypin) is a multifunctional, guanine deaminase that plays a major role in shaping the morphology of the dendritic arbor of hippocampal and cortical neurons. Cypin catalyzes the Zn2+-dependent deamination of guanine to xanthine, which is then metabolized to uric acid by xanthine oxidase. Cypin binds to tubulin heterodimers via its carboxyl terminal region (amino acids (aa) 350-454), which contains a collapsin response mediator protein (CRMP) homology domain (aa 350-403). Moreover, this region alone is not sufficient to facilitate microtubule polymerization; therefore, additional cypin regions must be involved in this process. Here, we asked whether cypin binds to fully formed microtubules and how overexpression of cypin regulates the microtubule cytoskeleton in dendrites of cultured hippocampal neurons. Protein-protein docking strategies confirm that the cypin homodimer binds to tubulin heterodimers via amino acids within aa 350-454. Biochemical pull-down data suggest that aa 1-220 are necessary for cypin binding to soluble tubulin heterodimers and to taxol-stabilized microtubules. Molecular docking of the cypin homodimer to soluble tubulin heterodimers reveals a consistently observed docking pose using aa 47-71, 113-118, 174-178, and 411-418, which is consistent with our biochemical data. Additionally, overexpression of cypin in hippocampal neurons results in decreased spacing between microtubules. Our results suggest that several protein domains facilitate cypin-mediated polymerization of tubulin heterodimers into microtubules, possibly through a mechanism whereby cypin dimers bind to multiple tubulin heterodimers.


Assuntos
Dendritos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Dendritos/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Transporte/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Microtúbulos/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Aminoácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA