Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 35465, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27804992

RESUMO

Antibiotic-resistant infections are predicted to kill 10 million people per year by 2050, costing the global economy $100 trillion. Therefore, there is an urgent need to develop alternative technologies. We have engineered a synthetic peptide called clavanin-MO, derived from a marine tunicate antimicrobial peptide, which exhibits potent antimicrobial and immunomodulatory properties both in vitro and in vivo. The peptide effectively killed a panel of representative bacterial strains, including multidrug-resistant hospital isolates. Antimicrobial activity of the peptide was demonstrated in animal models, reducing bacterial counts by six orders of magnitude, and contributing to infection clearance. In addition, clavanin-MO was capable of modulating innate immunity by stimulating leukocyte recruitment to the site of infection, and production of immune mediators GM-CSF, IFN-γ and MCP-1, while suppressing an excessive and potentially harmful inflammatory response by increasing synthesis of anti-inflammatory cytokines such as IL-10 and repressing the levels of pro-inflammatory cytokines IL-12 and TNF-α. Finally, treatment with the peptide protected mice against otherwise lethal infections caused by both Gram-negative and -positive drug-resistant strains. The peptide presented here directly kills bacteria and further helps resolve infections through its immune modulatory properties. Peptide anti-infective therapeutics with combined antimicrobial and immunomodulatory properties represent a new approach to treat antibiotic-resistant infections.


Assuntos
Antibacterianos/farmacologia , Fatores Imunológicos/farmacologia , Peptídeos/farmacologia , Animais , Infecções Bacterianas/tratamento farmacológico , Proteínas Sanguíneas/farmacologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/uso terapêutico , Peptídeos/toxicidade , Células RAW 264.7
2.
Antimicrob Agents Chemother ; 59(4): 2113-21, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25624332

RESUMO

Staphylococcus aureus is a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weak in vitro inhibitory activities against S. aureus, but several had strong antibacterial activities against S. aureus in an in vivo murine wound infection model. pYR, an immunomodulatory peptide from Rana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg(-1). Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


Assuntos
Antibacterianos/uso terapêutico , Anuros/metabolismo , Peptídeos/uso terapêutico , Dermatopatias Bacterianas/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Inibidores da Tripsina/uso terapêutico , Animais , Antibacterianos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Ciclização , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Dermatopatias Bacterianas/microbiologia , Infecções Estafilocócicas/microbiologia , Inibidores da Tripsina/síntese química , Inibidores da Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA