Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Pathol ; 262(2): 226-239, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37964706

RESUMO

Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/ß-catenin, mitogen-activated protein kinase, and TGF-ß receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Antígeno B7-H1 , Filogenia , Neoplasias Colorretais/patologia , Microambiente Tumoral/genética
2.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34359755

RESUMO

Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer characterised by a high frequency of loss-of-function ARID1A mutations and a poor response to chemotherapy. Despite their generally low mutational burden, an intratumoural T cell response has been reported in a subset of OCCC, with ARID1A purported to be a biomarker for the response to the immune checkpoint blockade independent of micro-satellite instability (MSI). However, assessment of the different immune cell types and spatial distribution specifically within OCCC patients has not been described to date. Here, we characterised the immune landscape of OCCC by profiling a cohort of 33 microsatellite stable OCCCs at the genomic, gene expression and histological level using targeted sequencing, gene expression profiling using the NanoString targeted immune panel, and multiplex immunofluorescence to assess the spatial distribution and abundance of immune cell populations at the protein level. Analysis of these tumours and subsequent independent validation identified an immune-related gene expression signature associated with risk of recurrence of OCCC. Whilst histological quantification of tumour-infiltrating lymphocytes (TIL, Salgado scoring) showed no association with the risk of recurrence or ARID1A mutational status, the characterisation of TILs via multiplexed immunofluorescence identified spatial differences in immunosuppressive cell populations in OCCC. Tumour-associated macrophages (TAM) and regulatory T cells were excluded from the vicinity of tumour cells in low-risk patients, suggesting that high-risk patients have a more immunosuppressive microenvironment. We also found that TAMs and cytotoxic T cells were also excluded from the vicinity of tumour cells in ARID1A-mutated OCCCs compared to ARID1A wild-type tumours, suggesting that the exclusion of these immune effectors could determine the host response of ARID1A-mutant OCCCs to therapy. Overall, our study has provided new insights into the immune landscape and prognostic associations in OCCC and suggest that tailored immunotherapeutic approaches may be warranted for different subgroups of OCCC patients.

3.
J Clin Med ; 10(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435284

RESUMO

1. BACKGROUND: The application of massively parallel sequencing has led to the identification of aberrant druggable pathways and somatic mutations within therapeutically relevant genes in gastro-oesophageal cancer. Given the widespread use of formalin-fixed paraffin-embedded (FFPE) samples in the study of this disease, it would be beneficial, especially for the purposes of biomarker evaluation, to assess the concordance between comprehensive exome-wide sequencing data from archival FFPE samples originating from a prospective clinical study and those derived from fresh-frozen material. 2. METHODS: We analysed whole-exome sequencing data to define the mutational concordance of 16 matched fresh-frozen and FFPE gastro-oesophageal tumours (N = 32) from a prospective clinical study. We assessed DNA integrity prior to sequencing and then identified coding mutations in genes that have previously been implicated in other cancers. In addition, we calculated the mutant-allele heterogeneity (MATH) for these samples. 3. RESULTS: Although there was increased degradation of DNA in FFPE samples compared with frozen samples, sequencing data from only two FFPE samples failed to reach an adequate mapping quality threshold. Using a filtering threshold of mutant read counts of at least ten and a minimum of 5% variant allele frequency (VAF) we found that there was a high median mutational concordance of 97% (range 80.1-98.68%) between fresh-frozen and FFPE gastro-oesophageal tumour-derived exomes. However, the majority of FFPE tumours had higher mutant-allele heterogeneity (MATH) scores when compared with corresponding frozen tumours (p < 0.001), suggesting that FFPE-based exome sequencing is likely to over-represent tumour heterogeneity in FFPE samples compared to fresh-frozen samples. Furthermore, we identified coding mutations in 120 cancer-related genes, including those associated with chromatin remodelling and Wnt/ß-catenin and Receptor Tyrosine Kinase signalling. 4. CONCLUSIONS: These data suggest that comprehensive genomic data can be generated from exome sequencing of selected DNA samples extracted from archival FFPE gastro-oesophageal tumour tissues within the context of prospective clinical trials.

4.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322618

RESUMO

Epidermal growth factor receptor antibodies (EGFR-Abs) confer a survival benefit in patients with RAS wild-type metastatic colorectal cancer (mCRC), but resistance invariably occurs. Previous data showed that only a minority of cancer cells harboured known genetic resistance drivers when clinical resistance to single-agent EGFR-Abs had evolved, supporting the activity of non-genetic resistance mechanisms. Here, we used error-corrected ctDNA-sequencing (ctDNA-Seq) of 40 cancer genes to identify drivers of resistance and whether a genetic resistance-gap (a lack of detectable genetic resistance mechanisms in a large fraction of the cancer cell population) also occurs in RAS wild-type mCRCs treated with a combination of EGFR-Abs and chemotherapy. We detected one MAP2K1/MEK1 mutation and one ERBB2 amplification in 2/3 patients with primary resistance and KRAS, NRAS, MAP2K1/MEK1 mutations and ERBB2 aberrations in 6/7 patients with acquired resistance. In vitro testing identified MAP2K1/MEK1 P124S as a novel driver of EGFR-Ab resistance. Mutation subclonality analyses confirmed a genetic resistance-gap in mCRCs treated with EGFR-Abs and chemotherapy, with only 13.42% of cancer cells harboring identifiable resistance drivers. Our results support the utility of ctDNA-Seq to guide treatment allocation for patients with resistance and the importance of investigating further non-canonical EGFR-Ab resistance mechanisms, such as microenvironmentally-mediated resistance. The detection of MAP2K1 mutations could inform trials of MEK-inhibitors in these tumours.

5.
Front Oncol ; 10: 505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363162

RESUMO

Background: Following chemo-radiotherapy (CRT) for human papilloma virus positive (HPV+) anal squamous cell carcinoma (ASCC), detection of residual/recurrent disease is challenging. Patients frequently undergo unnecessary repeated biopsies for abnormal MRI/clinical findings. In a pilot study we assessed the role of circulating HPV-DNA in identifying "true" residual disease. Methods: We prospectively collected plasma samples at baseline (n = 21) and 12 weeks post-CRT (n = 17). Circulating HPV-DNA (cHPV DNA) was measured using a novel next generation sequencing (NGS) assay, panHPV-detect, comprising of two primer pools covering distinct regions of eight high-risk HPV genomes (16, 18, 31, 33, 35, 45, 52, and 58) to detect circulating HPV-DNA (cHPV DNA). cHPV-DNA levels post-CRT were correlated to disease response. Results: In pre-CRT samples, panHPV-detect demonstrated 100% sensitivity and specificity for HPV associated ASCC. PanHPV-detect was able to demonstrate cHPV-DNA in 100% (9/9) patients with T1/T2N0 cancers. cHPV-DNA was detectable 12 weeks post CRT in just 2/17 patients, both of whom relapsed. 1/16 patients who had a clinical complete response (CR) at 3 months post-CRT but relapsed at 9 months and 1/1 patient with a partial response (PR). PanHPV-detect demonstrated 100% sensitivity and specificity in predicting response to CRT. Conclusion: We demonstrate that panHPV-detect, an NSG assay is a highly sensitive and specific test for the identification of cHPV-DNA in plasma at diagnosis. cHPV-DNA post-treatment may predict clinical response to CRT.

7.
Nat Commun ; 11(1): 139, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949146

RESUMO

Mismatch repair deficient (dMMR) gastro-oesophageal adenocarcinomas (GOAs) show better outcomes than their MMR-proficient counterparts and high immunotherapy sensitivity. The hypermutator-phenotype of dMMR tumours theoretically enables high evolvability but their evolution has not been investigated. Here we apply multi-region exome sequencing (MSeq) to four treatment-naive dMMR GOAs. This reveals extreme intratumour heterogeneity (ITH), exceeding ITH in other cancer types >20-fold, but also long phylogenetic trunks which may explain the exquisite immunotherapy sensitivity of dMMR tumours. Subclonal driver mutations are common and parallel evolution occurs in RAS, PIK3CA, SWI/SNF-complex genes and in immune evasion regulators. MSeq data and evolution analysis of single region-data from 64 MSI GOAs show that chromosome 8 gains are early genetic events and that the hypermutator-phenotype remains active during progression. MSeq may be necessary for biomarker development in these heterogeneous cancers. Comparison with other MSeq-analysed tumour types reveals mutation rates and their timing to determine phylogenetic tree morphologies.


Assuntos
Reparo de Erro de Pareamento de DNA , Neoplasias Esofágicas/genética , Heterogeneidade Genética , Neoplasias Gástricas/genética , Adenocarcinoma/genética , Proteínas de Ligação a DNA/genética , Exoma , Genes Neoplásicos/genética , Humanos , Evasão da Resposta Imune , Imunoterapia , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutação , Fenótipo , Filogenia
8.
Cancer Discov ; 8(11): 1390-1403, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206110

RESUMO

CDK4/6 inhibition with endocrine therapy is now a standard of care for advanced estrogen receptor-positive breast cancer. Mechanisms of CDK4/6 inhibitor resistance have been described preclinically, with limited evidence from clinical samples. We conducted paired baseline and end-of-treatment circulating tumor DNA sequencing from 195 patients in the PALOMA-3 randomized phase III trial of palbociclib plus fulvestrant versus placebo plus fulvestrant. We show that clonal evolution occurs frequently during treatment, reflecting substantial subclonal complexity in breast cancer that has progressed after prior endocrine therapy. RB1 mutations emerged only in the palbociclib plus fulvestrant arm and in a minority of patients (6/127, 4.7%, P = 0.041). New driver mutations emerged in PIK3CA (P = 0.00069) and ESR1 after treatment in both arms, in particular ESR1 Y537S (P = 0.0037). Evolution of driver gene mutations was uncommon in patients progressing early on palbociclib plus fulvestrant but common in patients progressing later on treatment. These findings inform future treatment strategies to address resistance to palbociclib plus fulvestrant.Significance: Acquired mutations from fulvestrant are a major driver of resistance to fulvestrant and palbociclib combination therapy. ESR1 Y537S mutation promotes resistance to fulvestrant. Clonal evolution results in frequent acquisition of driver mutations in patients progressing late on therapy, which suggests that early and late progression have distinct mechanisms of resistance. Cancer Discov; 8(11); 1390-403. ©2018 AACR. See related commentary by Schiff and Jeselsohn, p. 1352 This article is highlighted in the In This Issue feature, p. 1333.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/genética , Evolução Clonal , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Método Duplo-Cego , Feminino , Seguimentos , Fulvestranto/administração & dosagem , Humanos , Mutação , Piperazinas/administração & dosagem , Prognóstico , Piridinas/administração & dosagem
9.
Clin Chem ; 64(11): 1626-1635, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150316

RESUMO

BACKGROUND: Circulating free DNA sequencing (cfDNA-Seq) can portray cancer genome landscapes, but highly sensitive and specific technologies are necessary to accurately detect mutations with often low variant frequencies. METHODS: We developed a customizable hybrid-capture cfDNA-Seq technology using off-the-shelf molecular barcodes and a novel duplex DNA molecule identification tool for enhanced error correction. RESULTS: Modeling based on cfDNA yields from 58 patients showed that this technology, requiring 25 ng of cfDNA, could be applied to >95% of patients with metastatic colorectal cancer (mCRC). cfDNA-Seq of a 32-gene, 163.3-kbp target region detected 100% of single-nucleotide variants, with 0.15% variant frequency in spike-in experiments. Molecular barcode error correction reduced false-positive mutation calls by 97.5%. In 28 consecutively analyzed patients with mCRC, 80 out of 91 mutations previously detected by tumor tissue sequencing were called in the cfDNA. Call rates were similar for point mutations and indels. cfDNA-Seq identified typical mCRC driver mutations in patients in whom biopsy sequencing had failed or did not include key mCRC driver genes. Mutations only called in cfDNA but undetectable in matched biopsies included a subclonal resistance driver mutation to anti-EGFR antibodies in KRAS, parallel evolution of multiple PIK3CA mutations in 2 cases, and TP53 mutations originating from clonal hematopoiesis. Furthermore, cfDNA-Seq off-target read analysis allowed simultaneous genome-wide copy number profile reconstruction in 20 of 28 cases. Copy number profiles were validated by low-coverage whole-genome sequencing. CONCLUSIONS: This error-corrected, ultradeep cfDNA-Seq technology with a customizable target region and publicly available bioinformatics tools enables broad insights into cancer genomes and evolution. CLINICALTRIALSGOV IDENTIFIER: NCT02112357.


Assuntos
Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estudo de Associação Genômica Ampla , Humanos , Metástase Neoplásica , Sensibilidade e Especificidade
10.
Nat Commun ; 9(1): 1849, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748565

RESUMO

Although PARP inhibitors (PARPi) target homologous recombination defective tumours, drug resistance frequently emerges, often via poorly understood mechanisms. Here, using genome-wide and high-density CRISPR-Cas9 "tag-mutate-enrich" mutagenesis screens, we identify close to full-length mutant forms of PARP1 that cause in vitro and in vivo PARPi resistance. Mutations both within and outside of the PARP1 DNA-binding zinc-finger domains cause PARPi resistance and alter PARP1 trapping, as does a PARP1 mutation found in a clinical case of PARPi resistance. This reinforces the importance of trapped PARP1 as a cytotoxic DNA lesion and suggests that PARP1 intramolecular interactions might influence PARPi-mediated cytotoxicity. PARP1 mutations are also tolerated in cells with a pathogenic BRCA1 mutation where they result in distinct sensitivities to chemotherapeutic drugs compared to other mechanisms of PARPi resistance (BRCA1 reversion, 53BP1, REV7 (MAD2L2) mutation), suggesting that the underlying mechanism of PARPi resistance that emerges could influence the success of subsequent therapies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Idoso , Animais , Proteína BRCA1/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Análise Mutacional de DNA/métodos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Embrionárias Murinas , Mutagênese , Neoplasias/genética , Neoplasias/patologia , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Mutação Puntual , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Medicina de Precisão/métodos , Sequenciamento Completo do Genoma/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Dedos de Zinco/genética
11.
J Pathol Clin Res ; 4(3): 154-166, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659191

RESUMO

ARID1A is a tumour suppressor gene that is frequently mutated in clear cell and endometrioid carcinomas of the ovary and endometrium and is an important clinical biomarker for novel treatment approaches for patients with ARID1A defects. However, the accuracy of ARID1A immunohistochemistry (IHC) as a surrogate for mutation status has not fully been established for patient stratification in clinical trials. Here we tested whether ARID1A IHC could reliably predict ARID1A mutations identified by next-generation sequencing. Three commercially available antibodies - EPR13501 (Abcam), D2A8U (Cell Signaling), and HPA005456 (Sigma) - were optimised for IHC using cell line models and human tissue, and screened across a cohort of 45 gynaecological tumours. IHC was scored independently by three pathologists using an immunoreactive score. ARID1A mutation status was assessed using two independent sequencing platforms and the concordance between ARID1A mutation and protein expression was evaluated using Receiver Operating Characteristic statistics. Overall, 21 ARID1A mutations were identified in 14/43 assessable tumours (33%), the majority of which were predicted to be deleterious. Mutations were identified in 6/17 (35%) ovarian clear cell carcinomas, 5/8 (63%) ovarian endometrioid carcinomas, 2/5 (40%) endometrial carcinomas, and 1/7 (14%) carcinosarcomas. ROC analysis identified greater than 95% concordance between mutation status and IHC using a modified immunoreactive score for all three antibodies allowing a definitive cut-point for ARID1A mutant status to be calculated. Comprehensive assessment of concordance of ARID1A IHC and mutation status identified EPR13501 as an optimal antibody, with 100% concordance between ARID1A mutation status and protein expression, across different gynaecological histological subtypes. It delivered the best inter-rater agreement between all pathologists, as well as a clear cost-benefit advantage. This could allow patients to be accurately stratified based on their ARID1A IHC status into early phase clinical trials.


Assuntos
Adenocarcinoma de Células Claras/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Endometrioide/genética , Neoplasias dos Genitais Femininos/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Fatores de Transcrição/metabolismo , Adenocarcinoma de Células Claras/diagnóstico , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Endometrioide/diagnóstico , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patologia , Proteínas de Ligação a DNA , Feminino , Neoplasias dos Genitais Femininos/diagnóstico , Neoplasias dos Genitais Femininos/metabolismo , Neoplasias dos Genitais Femininos/patologia , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fatores de Transcrição/genética , Adulto Jovem
12.
Breast Cancer Res Treat ; 170(3): 573-581, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29700676

RESUMO

BACKGROUND: Bio-banked formalin-fixed paraffin-embedded (FFPE) tissues provide an excellent opportunity for translational genomic research. Historically matched blood has not always been collected as a source of germline DNA. This project aimed to establish if normal FFPE breast tissue could be used as an alternative to blood. METHODS: Exome sequencing was carried out on matched tumour tissue, normal breast tissue and blood on five patients in the START trial. Retrieved samples had been archived at different centres for at least 13 years. Following tissue macro-dissection and DNA extraction, targeted exome capture was performed using SureSelect Human All Exome v5 reagents (Agilent). Illumina paired-end libraries were prepared from the captured target regions and sequenced on a HiSeq2500 (Illumina) acquiring 2 × 75 bp reads. Somatic variants were called using the MuTect software analysis tool and copy number abnormalities (CNA) were identified using CNVkit. Targeted sequencing and droplet digital PCR were used to validate somatic variants and CNA, respectively. RESULTS: Overlap of somatic variants and CNA called on tumour versus blood and tumour versus normal breast tissue was good. Agreement in somatic variant calling ranged from 76.9 to 93.6%. Variants with an allele frequency lower than 10% were more difficult to validate irrespective of the type of germline DNA used. Pearson's correlation coefficients for paired comparisons of CNA using blood or normal tissue as reference ranged from 0.70 to 0.94. CONCLUSIONS: There is good correlation between the somatic mutations and CNA called using archived blood or normal breast tissue as germline reference material.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA de Neoplasias , Predisposição Genética para Doença , Células Germinativas/metabolismo , Neoplasias da Mama/terapia , Terapia Combinada , Variações do Número de Cópias de DNA , Exoma , Feminino , Perfilação da Expressão Gênica , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reprodutibilidade dos Testes , Resultado do Tratamento
13.
Nat Commun ; 9(1): 1028, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531215

RESUMO

Genome-wide association studies (GWAS) have identified approximately 100 breast cancer risk loci. Translating these findings into a greater understanding of the mechanisms that influence disease risk requires identification of the genes or non-coding RNAs that mediate these associations. Here, we use Capture Hi-C (CHi-C) to annotate 63 loci; we identify 110 putative target genes at 33 loci. To assess the support for these target genes in other data sources we test for associations between levels of expression and SNP genotype (eQTLs), disease-specific survival (DSS), and compare them with somatically mutated cancer genes. 22 putative target genes are eQTLs, 32 are associated with DSS and 14 are somatically mutated in breast, or other, cancers. Identifying the target genes at GWAS risk loci will lead to a greater understanding of the mechanisms that influence breast cancer risk and prognosis.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença , Epistasia Genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
14.
Nat Genet ; 49(7): 1133-1140, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604728

RESUMO

Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Adulto , Cromatina/genética , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Neoplasias Embrionárias de Células Germinativas/epidemiologia , Polimorfismo de Nucleotídeo Único , Risco , Neoplasias Testiculares/epidemiologia , Adulto Jovem
15.
Sci Data ; 4: 170020, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248920

RESUMO

We describe a screen for cellular response to drugs that makes use of haploid embryonic stem cells. We generated ten libraries of mutants with piggyBac gene trap transposon integrations, totalling approximately 100,000 mutant clones. Random barcode sequences were inserted into the transposon vector to allow the number of cells bearing each insertion to be measured by amplifying and sequencing the barcodes. These barcodes were associated with their integration sites by inverse PCR. We exposed these libraries to commonly used cancer drugs and profiled changes in barcode abundance by Ion Torrent sequencing in order to identify mutations that conferred sensitivity. Drugs tested included conventional chemotherapeutics as well as targeted inhibitors of topoisomerases, poly(ADP-ribose) polymerase (PARP), Hsp90 and WEE1.


Assuntos
Elementos de DNA Transponíveis , Células-Tronco Embrionárias Murinas , Neoplasias , Animais , Antineoplásicos/farmacologia , Estudo de Associação Genômica Ampla , Haploidia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética
16.
Cancer Discov ; 6(8): 838-851, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179038

RESUMO

UNLABELLED: FGFR1 and FGFR2 are amplified in many tumor types, yet what determines response to FGFR inhibition in amplified cancers is unknown. In a translational clinical trial, we show that gastric cancers with high-level clonal FGFR2 amplification have a high response rate to the selective FGFR inhibitor AZD4547, whereas cancers with subclonal or low-level amplification did not respond. Using cell lines and patient-derived xenograft models, we show that high-level FGFR2 amplification initiates a distinct oncogene addiction phenotype, characterized by FGFR2-mediated transactivation of alternative receptor kinases, bringing PI3K/mTOR signaling under FGFR control. Signaling in low-level FGFR1-amplified cancers is more restricted to MAPK signaling, limiting sensitivity to FGFR inhibition. Finally, we show that circulating tumor DNA screening can identify high-level clonally amplified cancers. Our data provide a mechanistic understanding of the distinct pattern of oncogene addiction seen in highly amplified cancers and demonstrate the importance of clonality in predicting response to targeted therapy. SIGNIFICANCE: Robust single-agent response to FGFR inhibition is seen only in high-level FGFR-amplified cancers, with copy-number level dictating response to FGFR inhibition in vitro, in vivo, and in the clinic. High-level amplification of FGFR2 is relatively rare in gastric and breast cancers, and we show that screening for amplification in circulating tumor DNA may present a viable strategy to screen patients. Cancer Discov; 6(8); 838-51. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 803.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Evolução Clonal/genética , Amplificação de Genes , Piperazinas/farmacologia , Pirazóis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética , Animais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Taquicininas/metabolismo , Tomografia Computadorizada por Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Transl Med ; 7(313): 313ra182, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26560360

RESUMO

Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AIs). We developed ultra high-sensitivity multiplex digital polymerase chain reaction assays for ESR1 mutations in circulating tumor DNA (ctDNA) and investigated the clinical relevance and origin of ESR1 mutations in 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies and was accurately assessed in samples shipped at room temperature in preservative tubes. ESR1 mutations were found exclusively in estrogen receptor-positive breast cancer patients previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy [hazard ratio, 3.1; 95% confidence interval (CI), 1.9 to 23.1; P = 0.0041]. ESR1 mutation prevalence differed markedly between patients who were first exposed to AI during the adjuvant and metastatic settings [5.8% (3 of 52) versus 36.4% (16 of 44), respectively; P = 0.0002]. In an independent cohort, ESR1 mutations were identified in 0% (0 of 32; 95% CI, 0 to 10.9) tumor biopsies taken after progression on adjuvant AI. In a patient with serial sampling, ESR1 mutation was selected during metastatic AI therapy to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI but are commonly selected by therapy for metastatic disease, providing evidence that mechanisms of resistance to targeted therapy may be substantially different between the treatment of micrometastatic and overt metastatic cancer.


Assuntos
Antineoplásicos/administração & dosagem , Inibidores da Aromatase/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Reação em Cadeia da Polimerase Multiplex
18.
PLoS One ; 10(9): e0139074, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413866

RESUMO

Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Técnicas de Genotipagem , Neoplasias Pulmonares/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Células Clonais , DNA de Neoplasias/genética , Formaldeído , Frequência do Gene/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inclusão em Parafina , Temperatura , Fixação de Tecidos
19.
J Pathol ; 236(2): 186-200, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25692405

RESUMO

Germline mutations in the tumour suppressor BRCA2 predispose to breast, ovarian and a number of other human cancers. Brca2-deficient mouse models are used for preclinical studies but the pattern of genomic alterations in these tumours has not yet been described in detail. We have performed whole-exome DNA sequencing analysis of mouse mammary tumours from Blg-Cre Brca2(f/f) Trp53(f/f) animals, a model of BRCA2-deficient human cancer. We also used the sequencing data to estimate DNA copy number alterations in these tumours and identified a recurrent copy number gain in Met, which has been found amplified in other mouse mammary cancer models. Through a comparative genomic analysis, we identified several mouse Blg-Cre Brca2(f/f) Trp53(f/f) mammary tumour somatic mutations in genes that are also mutated in human cancer, but few of these genes have been found frequently mutated in human breast cancer. A more detailed analysis of these somatic mutations revealed a set of genes that are mutated in human BRCA2 mutant breast and ovarian tumours and that are also mutated in mouse Brca2-null, Trp53-null mammary tumours. Finally, a DNA deletion surrounded by microhomology signature found in human BRCA1/2-deficient cancers was not common in the genome of these mouse tumours. Although a useful model, there are some differences in the genomic landscape of tumours arising in Blg-Cre Brca2(f/f) Trp53(f/f) mice compared to human BRCA-mutated breast cancers. Therefore, this needs to be taken into account in the use of this model.


Assuntos
Genes BRCA2/fisiologia , Neoplasias Mamárias Experimentais/genética , Proteína Supressora de Tumor p53/deficiência , Animais , Antígenos CD/genética , Neoplasias da Mama/genética , Proteínas Cromossômicas não Histona/genética , Variações do Número de Cópias de DNA/genética , DNA de Neoplasias/genética , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Mutação em Linhagem Germinativa/genética , Humanos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/genética , Receptores Imunológicos/genética , Análise de Sequência de DNA , Família de Moléculas de Sinalização da Ativação Linfocitária
20.
Genome Res ; 24(11): 1854-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25122612

RESUMO

Genome-wide association studies have identified more than 70 common variants that are associated with breast cancer risk. Most of these variants map to non-protein-coding regions and several map to gene deserts, regions of several hundred kilobases lacking protein-coding genes. We hypothesized that gene deserts harbor long-range regulatory elements that can physically interact with target genes to influence their expression. To test this, we developed Capture Hi-C (CHi-C), which, by incorporating a sequence capture step into a Hi-C protocol, allows high-resolution analysis of targeted regions of the genome. We used CHi-C to investigate long-range interactions at three breast cancer gene deserts mapping to 2q35, 8q24.21, and 9q31.2. We identified interaction peaks between putative regulatory elements ("bait fragments") within the captured regions and "targets" that included both protein-coding genes and long noncoding (lnc) RNAs over distances of 6.6 kb to 2.6 Mb. Target protein-coding genes were IGFBP5, KLF4, NSMCE2, and MYC; and target lncRNAs included DIRC3, PVT1, and CCDC26. For one gene desert, we were able to define two SNPs (rs12613955 and rs4442975) that were highly correlated with the published risk variant and that mapped within the bait end of an interaction peak. In vivo ChIP-qPCR data show that one of these, rs4442975, affects the binding of FOXA1 and implicate this SNP as a putative functional variant.


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 9/genética , Genoma Humano/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...