Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(2): e13130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846701

RESUMO

To remove the Ciprofloxacin (CIP) from aqueous solution, ZnO-Ag-Gp nanocomposite exhibited efficient photocatalytic properties. The biopersistent CIP is pervasive in surface water and also hazardous to human and animal health. This study utilized the hydrothermal technique to prepare Ag-doped ZnO hybridizing Graphite (Gp) sheet (ZnO-Ag-Gp) to degrade pharmaceuticals pollutant CIP from an aqueous medium. The structural and chemical compositions of the photocatalysts were determined by XRD, FTIR and XPS analysis. FESEM and TEM images revealed the nanorod ZnO with round shape Ag distributed on a Gp surface. The reduced bandgap of the ZnO-Ag-Gp sample enhanced the photocatalytic property which was measured by using UV-vis Spectroscopy. Dose optimization study found that 1.2 g/L is optimum for single (ZnO) and binary (ZnO-Gp and ZnO-Ag), where 0.3 g/L ternary (ZnO-Ag-Gp) exhibited maximum degradation efficiency (98%) within 60 min for 5 mg/L CIP. Pseudo 1st order reaction kinetics rate was found highest for ZnO-Ag-Gp (0.05983 min-1) and it decreased to 0.03428 min-1 for annealed sample. Removal efficiency decreased to only 90.97% at 5th run and hydroxyl radicals played a vital role to degrade CIP from aqueous solution. UV/ZnO-Ag-Gp will be a promising technique to degrade wide-ranging pharmaceutical antibiotics from the aquatic medium.

2.
RSC Adv ; 11(61): 38457-38472, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35493251

RESUMO

The application of low-dimensional nanomaterials in clinical practice as efficient sensors has been increasing day by day due to progress in the field of nanoscience. In this research work, we have conducted a theoretical investigation to nominate a potential electrochemical sensor for the allopurinol (APN) drug molecule via studying the fundamental interactions of the drug molecule with two nanocages (carbon nanocage/CNC - C24 and boron nitride nanocage/BNNC - B12N12) and two nanosheets (graphene - C54H18 and boron nitride - B27N27H18) by means of the DFT B3LYP/6-31G(d,p) level of theory in both gas and water phases. The adsorption energies of APN-BNNC conjugated structures are in the range of -20.90 kcal mol-1 to -22.33 kcal mol-1, which indicates that weak chemisorption has occurred. This type of interaction happened due to charge transfer from the APN molecule to BNNC, which was validated and characterized based on the quantum theory of atoms in molecules, natural bond analysis, and reduced density gradient analysis. The highest decreases in energy gap (36.22% in gas and 26.79% in water) and maximum dipole moment (10.48 Debye in gas and 13.88 Debye in water) were perceived for the APN-BNNC conjugated structure, which was also verified via frontier molecular orbital (FMO) and MEP analysis. Also, the highest sensitivity (BNNC > BNNS > CNC > GNS) and favorable short recovery time (in the millisecond range) of BNNC can make it an efficient detector for the APN drug molecule.

3.
J Mol Liq ; 320: 114427, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33012931

RESUMO

In this review article, we have presented a detailed analysis of the recent advancement of quantum mechanical calculations in the applications of the low-dimensional nanomaterials (LDNs) into biomedical fields like biosensors and drug delivery systems development. Biosensors play an essential role for many communities, e.g. law enforcing agencies to sense illicit drugs, medical communities to remove overdosed medications from the human and animal body etc. Besides, drug delivery systems are theoretically being proposed for many years and experimentally found to deliver the drug to the targeted sites by reducing the harmful side effects significantly. In current COVID-19 pandemic, biosensors can play significant roles, e.g. to remove experimental drugs during the human trials if they show any unwanted adverse effect etc. where the drug delivery systems can be potentially applied to reduce the side effects. But before proceeding to these noble and expensive translational research works, advanced theoretical calculations can provide the possible outcomes with considerable accuracy. Hence in this review article, we have analyzed how theoretical calculations can be used to investigate LDNs as potential biosensor devices or drug delivery systems. We have also made a very brief discussion on the properties of biosensors or drug delivery systems which should be investigated for the biomedical applications and how to calculate them theoretically. Finally, we have made a detailed analysis of a large number of recently published research works where theoretical calculations were used to propose different LDNs for bio-sensing and drug delivery applications.

4.
J Mol Model ; 26(6): 153, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451624

RESUMO

Recent photoelectron spectroscopy and computational studies have shown that boron ring-centered transition metal-doped inverse sandwich complexes prefer planar or quasi-planar structures which could be a potential building blocks for designing better nanosystems with tailored properties. Due to promising technological applications of different boron nanoclusters, we present a study on the structural, electronic, magnetic, and spectroscopic properties of Co-centered inverted sandwich monocyclic boron nanoclusters with pyramidal, CoBn, and bi-pyramidal, Co2Bn (n = 6-8) shapes. The investigations have been carried out on previously reported stable hexa-, hepta-, and octagonal hole containing pyramidal and bi-pyramidal boron clusters by employing density functional theory calculations with B3LYP hybrid exchange-correlation functional. Our calculation suggests that all the global minima structures have stable planar or quasiplanar symmetrical cyclic motif. The structural stability of clusters has been investigated by analyzing binding energy, thermodynamical parameters, vibrational spectra etc. All parameters indicate that the bi-pyramidal structures (Co2B6, Co2B7, and Co2B8) are more stable than both pristine and singly doped boron nanoclusters. On the contrary, the bi-pyramidal cluster is chemically less stable than the pyramidal clusters (except CoB7) which is supported by the ionization potential, electron affinity, energy gap, and global indices calculations. Molecular electrostatic potential surface and HOMO-LUMO analysis have been carried out to understand the thermodynamically stable clusters that arises due to specific inter/intra-molecular interactions. The presence of magnetic element (Co) in the clusters induces ferromagnetic properties which have been found by investigating the magnetic moment, spin density, and DOS spectra analysis. Size and geometry-dependent properties of boron nanoclusters have been observed as evident from the energy gap and optical absorptions analysis.

5.
J Vasc Surg Venous Lymphat Disord ; 3(2): 198-200, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26993840

RESUMO

Although inferior vena cava filter placement is a safe and effective method of reducing the risk of pulmonary embolism, devastating complications can result from thrombosis and migration. Here we present a case of acute renal failure as a result of suprarenal inferior vena cava filter migration and caval thrombosis. We discuss a novel endovascular approach for its management by mechanical aspirational thrombectomy.


Assuntos
Injúria Renal Aguda/terapia , Trombectomia , Filtros de Veia Cava/efeitos adversos , Veia Cava Inferior/patologia , Trombose Venosa/complicações , Trombose Venosa/cirurgia , Injúria Renal Aguda/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Embolia Pulmonar/etiologia , Insuficiência Renal , Trombectomia/efeitos adversos , Veia Cava Inferior/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...