Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res (Hoboken) ; 48(6): 1036-1049, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649284

RESUMO

BACKGROUND: Chronic alcohol consumption is a major public health issue. The primary organ damaged by alcohol abuse is the liver, leading to alcohol-associated liver disease (ALD). ALD begins with hepatic steatosis and can progress to fibrosis and cirrhosis; however, we have an incomplete understanding of ALD pathogenesis. Interestingly, the liver is also the major organ for vitamin A metabolism and storage, and ALD has previously been linked with altered hepatic vitamin A homeostasis. We hypothesize that alcohol-induced vitamin A depletion disrupts its normal function in the liver, contributing to the pathogenesis of ALD. To test this hypothesis, we postulated that adding copious vitamin A to the diet might alleviate ALD, and conversely, that a vitamin A deficient diet would worsen ALD. METHODS: We conducted two dietary intervention studies in mice comparing deficient (0 IU/g diet) and copious (25 IU/g diet) dietary vitamin A intake versus control (4 IU/g diet), using the NIAAA chronic-binge model of ALD. Hepatic steatosis was assessed using histopathological and biochemical approaches. Tissue Vitamin A levels were measured using high-performance liquid chromatography. Markers of ALD, hepatic inflammation and lipid metabolism were analyzed by the quantitative polymerase chain reaction and western blotting. RESULTS: As expected, a 0 IU/g Vitamin A diet decreased, and a 25 IU/g Vitamin A diet increased hepatic Vitamin A stores. However, alcohol induced changes in hepatic triglyceride levels, markers of hepatic lipid metabolism, inflammation and fibrosis were not significantly different in mice consuming a copious or deficient vitamin A diet compared to control. CONCLUSIONS: Altered vitamin A intake and hepatic vitamin A storage have a minor effect on the pathogenesis of ALD. Thus, given the known link between altered retinoic acid signaling and ALD, future studies that further explore this linkage are warranted.

2.
Front Physiol ; 13: 940974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864895

RESUMO

Alcohol-associated liver disease (ALD) is a major public health issue that significantly contributes to human morbidity and mortality, with no FDA-approved therapeutic intervention available. The health burden of ALD has worsened during the COVID-19 pandemic, which has been associated with a spike in alcohol abuse, and a subsequent increase in hospitalization rates for ALD. A key knowledge gap that underlies the lack of novel therapies for ALD is a need to better understand the pathogenic mechanisms that contribute to ALD initiation, particularly with respect to hepatic lipid accumulation and the development of fatty liver, which is the first step in the ALD spectrum. The goal of this review is to evaluate the existing literature to gain insight into the pathogenesis of alcohol-associated fatty liver, and to synthesize alcohol's known effects on hepatic lipid metabolism. To achieve this goal, we specifically focus on studies from transgenic mouse models of ALD, allowing for a genetic dissection of alcohol's effects, and integrate these findings with our current understanding of ALD pathogenesis. Existing studies using transgenic mouse models of ALD have revealed roles for specific genes involved in hepatic lipid metabolic pathways including fatty acid uptake, mitochondrial ß-oxidation, de novo lipogenesis, triglyceride metabolism, and lipid droplet formation. In addition to reviewing this literature, we conclude by identifying current gaps in our understanding of how alcohol abuse impairs hepatic lipid metabolism and identify future directions to address these gaps. In summary, transgenic mice provide a powerful tool to understand alcohol's effect on hepatic lipid metabolism and highlight that alcohol abuse has diverse effects that contribute to the development of alcohol-associated fatty liver disease.

3.
PLoS One ; 17(1): e0261675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030193

RESUMO

Chronic alcohol consumption leads to a spectrum of liver disease that is associated with significant global mortality and morbidity. Alcohol is known to deplete hepatic vitamin A content, which has been linked to the pathogenesis of alcoholic liver disease. It has been suggested that induction of Cytochrome P450 2E1 (CYP2E1) contributes to alcohol-induced hepatic vitamin A depletion, but the possible contributions of other retinoid-catabolizing CYPs have not been well studied. The main objective of this study was to better understand alcohol-induced hepatic vitamin A depletion and test the hypothesis that alcohol-induced depletion of hepatic vitamin A is due to CYP-mediated oxidative catabolism. This hypothesis was tested in a mouse model of chronic alcohol consumption, including wild type and Cyp2e1 -/- mice. Our results show that chronic alcohol consumption is associated with decreased levels of hepatic retinol, retinyl esters, and retinoic acid. Moreover, the depletion of hepatic retinoid is associated with the induction of multiple retinoid catabolizing CYPs, including CYP26A1, and CYP26B1 in alcohol fed wild type mice. In Cyp2e1 -/- mice, alcohol-induced retinol decline is blunted but retinyl esters undergo a change in their acyl composition and decline upon alcohol exposure like WT mice. In conclusion, the alcohol induced decline in hepatic vitamin A content is associated with increased expression of multiple retinoid-catabolizing CYPs, including the retinoic acid specific hydroxylases CYP26A1 and CYP26B1.


Assuntos
Retinoides
4.
Br J Nutr ; 122(3): 252-261, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31405389

RESUMO

Oxylipins are bioactive lipid mediators synthesised from PUFA. The most well-known oxylipins are the eicosanoids derived from arachidonic acid (ARA), and many of them influence cardiac physiology in health and disease. Oxylipins are also formed from other n-3 and n-6 PUFA such as α-linolenic acid (ALA), EPA, DHA and linoleic acid (LA), but fundamental data on the heart oxylipin profile, and the effect of diet and sex on this profile, are lacking. Therefore, weanling female and male Sprague-Dawley rats were given American Institute of Nutrition (AIN)-93G-based diets modified in oil composition to provide higher levels of ALA, EPA, DHA, LA and LA + ALA, compared with control diets. After 6 weeks, free oxylipins in rat hearts were increased primarily by their precursor PUFA, except for EPA oxylipins, which were increased not only by dietary EPA but also by dietary ALA or DHA. Dietary DHA had a greater effect than ALA or EPA on reducing ARA oxylipins. An exception to the dietary n-3 PUFA-lowering effects on ARA oxylipins was observed for several ARA-derived PG metabolites that were higher in rats given EPA diets. Higher dietary LA increased LA oxylipins, but it had no effect on ARA oxylipins. Overall, heart oxylipins were higher in female rats, but this depended on dietary treatment: the female oxylipin:male oxylipin ratio was higher in rats provided the ALA compared with the DHA diet, with other diet groups having ratios in between. In conclusion, individual PUFA and sex have unique and interactive effects on the rat heart free oxylipin profile.


Assuntos
Ração Animal , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Miocárdio/metabolismo , Oxilipinas/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Feminino , Coração/fisiologia , Ácido Linoleico/administração & dosagem , Metabolismo dos Lipídeos , Masculino , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Ácido alfa-Linolênico/administração & dosagem
5.
Lipids ; 54(1): 67-80, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30697757

RESUMO

Oxylipins are bioactive lipids formed by the monooxygenation of polyunsaturated fatty acids (PUFA). Eicosanoids derived from arachidonic acid (ARA) are the most well-studied class of oxylipins that influence brain functions in normal health and in disease. However, comprehensive profiling of brain oxylipins from other PUFA with differing functions, and the examination of the effects of dietary PUFA and sex differences in oxylipins are warranted. Therefore, female and male Sprague-Dawley rats were provided standard rodent diets that provided additional levels of the individual n-3 PUFA α-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), or the n-6 PUFA linoleic acid (LNA) alone or with ALA (LNA + ALA) compared to essential fatty acid-sufficient control diets. Oxylipins and PUFA were quantified in whole brains using HPLC-MS/MS and GC, respectively. Eighty-seven oxylipins were present at quantifiable levels: 51% and 17% of these were derived from ARA and DHA, respectively. At the mass level, ARA and DHA oxylipins comprised 81-90% and 6-12% of total oxylipins, while phospholipid ARA and DHA represented 25-35% and 49-62% of PUFA mass, respectively. Increasing dietary n-3 PUFA resulted in higher levels of oxylipins derived from their precursor PUFA; otherwise, the brain oxylipin profile was largely resistant to modulation by diet. Approximately 25% of oxylipins were higher in males, and this was largely unaffected by diet, further revealing a tight regulation of brain oxylipin levels. These fundamental data on brain oxylipin composition, diet effects, and sex differences will help guide future studies examining the functions of oxylipins in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Ácidos Graxos Insaturados/metabolismo , Oxilipinas/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Ácido alfa-Linolênico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA