Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 79(1): 127-136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206479

RESUMO

Chia seeds (CS) and sprouts are rich sources of phenolic compounds and polyunsaturated fatty acids (PUFA). We hypothesized that the application of chemical stressors, such as salicylic acid (SA) and hydrogen peroxide (H2O2), would induce changes in the polyphenol and fatty acid profile of chia sprouts, leading to an increase in their nutraceutical potential. This study aimed to assess the effect of non-elicited (NE) and chemically elicited (CE with 1-mM SA and 20-mM H2O2) sprouting on the polyphenol and fatty acid (FA) profiles of chia through high-resolution liquid chromatography-mass spectrometry and chemometric analyses. NE and CE chia sprouts showed increased content and diversity of polyphenols compared to the CS but with lower content of FA. Interestingly, rosmarinic acid was the major polyphenol identified in CS and was increased about 4-fold in all chia sprouts, whereas the major PUFA of CS, α-linolenic acid, was reduced by 39%. Regarding the chemical elicitation, the multivariate analyses indicated that SA-elicited chia sprouts were characterized by their high content of most polyphenols, mainly flavones and isoflavones, as well as a high antioxidant capacity, whereas H2O2-elicited chia sprouts were differentiated by protects their PUFA composition and seedling growth parameters. These results demonstrate that the chemical elicitation with SA and H2O2 represents a promising approach for improving sprouts' nutraceutical quality and could be used in further research to develop strategies for agriculture and food production.


Assuntos
Peróxido de Hidrogênio , Salvia , Peróxido de Hidrogênio/farmacologia , Ácido Salicílico/análise , Antioxidantes/análise , Polifenóis/análise , Ácidos Graxos/análise , Compostos Fitoquímicos/análise , Sementes/química , Salvia/química
2.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175241

RESUMO

Sweet peppers are consumed worldwide, and traditional uses have sparked interest in their applications as dietary antioxidants, which can be enhanced in plants using elicitors. These are endowed with phytochemicals with potential health benefits such as antioxidants, bioavailability, and bioaccessibility. The trend in metabolomics shows us chemical fingerprints linking metabolomics, innovative analytical form, and bioinformatics tools. The objective was to evaluate the impact of multiple stress interactions, elicitor concentrations, and electrical conductivity on the concentration of secondary metabolites to relate their response to metabolic pathways through the foliar application of a cocktail of said elicitors in pepper crops under greenhouse conditions. The extracts were analyzed by spectrophotometry and gas chromatography, and it was shown that the PCA analysis identified phenolic compounds and low molecular weight metabolites, confirming this as a metabolomic fingerprint in the hierarchical analysis. These compounds were also integrated by simultaneous gene and metabolite simulants to obtain effect information on different metabolic pathways. Showing changes in metabolite levels at T6 (36 mM H2O2 and 3.6 dS/m) and T7 (0.1 mM SA and 3.6 dS/m) but showing statistically significant changes at T5 (3.6 dS/m) and T8 (0.1 mM SA, 36 mM H2O2, and 3.6 dS/m) compared to T1 (32 dS/m) or control. Six pathways changed significantly (p < 0.05) in stress-induced treatments: aminoacyl t-RNA and valine-leucine-isoleucine biosynthesis, and alanine-aspartate-glutamate metabolism, glycoxylate-dicarboxylate cycle, arginine-proline, and citrate. This research provided a complete profile for the characterization of metabolomic fingerprint of bell pepper under multiple stress conditions.


Assuntos
Antioxidantes , Capsicum , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Capsicum/metabolismo , Peróxido de Hidrogênio/metabolismo , Cromatografia Gasosa , Metabolômica/métodos , Espectrofotometria
3.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014575

RESUMO

Hylocereus spp. present two varieties of commercial interest due to their color, organoleptic characteristics, and nutritional contribution, such as Hylocerous polyrhizus and Selenicerus undatus. The fruit recognized as dragon fruit or Pitahaya is an exotic fruit whose pulp is consumed, while the peel is discarded during the process. Studies indicate that the pulp has vitamin C and betalains, and seeds are rich in essential fatty acids, compounds that can contribute to the prevention of chronic non-communicable diseases (cancer, hypertension, and diabetes). In the present study, polyphenolic compounds, biological activity, and fatty acids present in the peel of the two varieties of pitahaya peel were evaluated, showing as a result that the variety S. undatus had higher antioxidant activity with 51% related to the presence of flavonoids 357 mgRE/g sample and fatty acids (hexadecanoic acid and linoleate) with 0.310 and 0.248 mg AG/g sample, respectively. On the other hand, H. polyrhizuun showed a significant difference in the inhibitory activity of amylase and glucosidase enzymes with 68% and 67%, respectively. We conclude that pitahaya peel has potential health effects and demonstrate that methylated fatty acids could be precursors to betalain formation, as well as showing effects against senescence and as a biological control against insects; in the same way, the peel can be reused as a by-product for the extraction of important enzymes in the pharmaceutical and food industry.


Assuntos
Cactaceae , Antioxidantes/química , Betalaínas/análise , Cactaceae/química , Ácidos Graxos/análise , Frutas/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia
4.
Nanomaterials (Basel) ; 12(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683797

RESUMO

The problem of water pollution by persistent substances and microorganisms requires solutions that materials such as silver-modified titanium dioxide can provide due to their excellent photocatalytic and antimicrobial properties. However, the synthesis methods conventionally used to obtain these materials involve toxic chemical reagents such as sodium borohydride (NaBH4). The search for alternative synthesis methods that use environmentally friendly substances, such as the biosynthesis method, was evaluated. Silver-titanium dioxide (Ag-TiO2) was synthesized by a Eucalyptus globulus L. extract as a reductive agent through sol-gel and microwave-assisted sol-gel processes. Four different solvents were tested to extract secondary metabolites to determine their roles in reducing silver nanoparticles. Titanium dioxide nanoparticles with sizes from 11 to 14 nm were obtained in the anatase phase, and no narrowing of the bandgap was observed (3.1-3.2 eV) for the Ag-TiO2 materials compared with the pure TiO2. Interestingly, the bacterial inhibition values were close to 100%, suggesting an effective antimicrobial mechanism related to the properties of silver. Finally, by the physicochemical characterization of the materials and their antimicrobial properties, it was possible to obtain a suitable biosynthesized Ag-TiO2 material as a green option for water disinfection that may be compared to the conventional methods.

5.
Heliyon ; 8(3): e09049, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35287323

RESUMO

Current agricultural practices for vegetable production are unsustainable, and the use of certain nanomaterials has shown significant potential for either plant growth promotion or defense induction in crop species. The aim of the present work was to evaluate the possible effects of two SBA nano-structured silica materials differing in morphology; SBA-15, with porous structure in parallel and with a highly ordered hexagonal array and SBA-16, with spheric nano-cages located in cubic arrays, as plant growth promoters/eustressors on chili pepper (Capsicum annuum L.) during cultivation under greenhouse conditions. The study was carried out at three foliarly applied concentrations (20, 50 and 100 ppm) of either SBA materials to determine effects on seed germination, seedling growth, plant performance and cold tolerance under greenhouse. Phytotoxicity tests were carried out using higher concentrations (100, 1000 and 200 ppm) applied by dipping or spraying onto chili pepper plants. Deionized water controls were included. The results showed that the SBA materials did not affect seed germination; however, SBA-15 at 50 ppm and 100 ppm applied by imbibition significantly increased seedling height (up to 8-fold) and provided enhanced growth performance in comparison with controls under select treatment regimes. Weekly application of SBA-15 at 20 ppm significantly increased stem diameter and cold tolerance; however, SBA-16 showed significant decreases in plant height (20 ppm biweekly applied) and stem diameter (20, 50 and 100 ppm biweekly applied). The results demonstrate that both SBA materials provided hormetic effects in a dose dependent manner on chili pepper production and protection to cold stress. No phytotoxic response was evident. These findings suggested the nanostructured mesoporous silica have potential as a sustainable amendment strategy to increase crop production under stress-inducing cultivation conditions.

6.
Foods ; 12(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613244

RESUMO

The group of aquatic insects collectively called "water boatmen" or "Axayacatl" (Hemiptera: Corixidae) and their eggs, called "Ahuahutle", have been consumed and cultivated since the pre-Hispanic era in Mexico. Nevertheless, food composition databases contain limited information on the nutritional composition of these eggs. This work evaluates the macronutrients and bioactive compounds of water boatmen eggs obtained from three different locations in Mexico. The primary analyses to be determined for the first time were some bioactive compounds in the eggs, such as phenolic compounds, total flavonoids, condensed tannins content, antioxidant activity (DPPH and ABTS), and, additionally, fatty acids and proximal composition. The results showed that the sample from Hidalgo (AMC) presented the highest number of phenolic compounds (855.12 ± 0.52), followed by ALT (125.52 ± 0.05) and, with the lowest amount, AMT (99.92 ± 0.13), all expressed in an mg GAE/g sample. ALT indicated the highest mol TE/g sample concentration for ABTS (25.34 ± 0.472) and DPPH (39.76 ± 0.054), showing a significant difference in the DPPH method with the AMT samples. The three Corixidae egg samples had between 15 to 18 different fatty acid profiles, and there were statistically significant differences (Student's t-test ≤ 0.05) between the means using MSD. The total fats of the three samples were between 12.5 and 15.5 g/100 g dry basis. In addition, Corixidae eggs are excellent protein sources. Thus, water boatmen's eggs can be considered to be a food rich in bioactive compounds.

7.
Nanomaterials (Basel) ; 10(9)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842495

RESUMO

Nanotechnology is a tool that in the last decade has demonstrated multiple applications in several sectors, including agroindustry. There has been an advance in the development of nanoparticulated systems to be used as fertilizers, pesticides, herbicides, sensors, and quality stimulants, among other applications. The nanoencapsulation process not only protects the active ingredient but also can affect the diffusion, interaction, and activity. It is important to evaluate the negative aspects of the use of nanoparticles (NPs) in agriculture. Given the high impact of the nanoparticulated systems in the agro-industrial field, this review aims to address the effects of various nanomaterials on the morphology, metabolomics, and genetic modification of several crops.

8.
Molecules ; 25(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244463

RESUMO

Mexican spices are used in the supplementation of the human diet and as medicinal herbs for the particularly high amounts of compounds capable of deactivating free radicals. In addition, these spices can have beneficial effects on chronic, no-transmissible diseases such as type II diabetes and hypertension arterial. The objective of this study is to determine the content of phenolic compounds on the antioxidant activity and inhibitory enzymes of α-amylase, α-glucosidase and angiotensin-converting enzyme in melissa, peppermint, thyme and mint, which are subjected to microwave drying, conventional and freeze-drying to be used as alternative treatments. Spices were evaluated to determine total phenols, flavonoids, tannins, 2,2-Diphenyl-1-picrylhydrazyl (DPPH), (2,2'-azino-bis- (3-ethyl benzothiazolin-6-ammonium sulphonate) (ABTS) and Ferric Reducing/Antioxidant Power (FRAP), enzymatic activity. The investigation showed that conventional drying caused a decrease in antioxidant properties and inhibitory activity, in some species, while remained preserved in microwave drying and freeze-drying. The activity of polyphenol oxides and peroxidase decreases with high temperatures and these increase with the use of cold temperatures. This study aims to determine the extent of optimal drying required to preserve phenolic compounds, and the positive effect on antioxidant activity and enzymatic activity in in vitro models, which will produce benefits for the infusion processing industry and the pharmaceutical industry.


Assuntos
Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais , Antioxidantes/química , Antioxidantes/farmacologia , Liofilização , Medicina Tradicional , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Especiarias , Relação Estrutura-Atividade
9.
Molecules ; 23(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380710

RESUMO

In Mexico one in 14 deaths are caused by diabetes mellitus (DM) or by the macro and microvascular disorders derived from it. A continuous hyperglycemic state is characteristic of DM, resulting from a sustained state of insulin resistance and/or a dysfunction of ß-pancreatic cells. Acaciella angustissima is a little studied species showing a significant antioxidant activity that can be used as treatment of this disease or preventive against the complications. The objective of this study was to explore the effect of oral administration of A. angustissima methanol extract on physiological parameters of streptozotocin-induced diabetic rats. The results indicated a significant reduction in blood glucose levels, an increase in serum insulin concentration, a decrease in lipid levels and an improvement in the parameters of kidney damage by applying a concentration of 100 mg/Kg B.W. However, glucose uptake activity was not observed in the adipocyte assay. Moreover, the extract of A. angustissima displayed potential for the complementary treatment of diabetes and its complications likely due to the presence of bioactive compounds such as protocatechuic acid. This study demonstrated that methanol extract of Acacciella angustissima has an antidiabetic effect by reducing the levels of glucose, insulin and improved physiological parameters, hypolipidemic effect, oxidative stress and renal damage in diabetic rats.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Fabaceae/química , Hipolipemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Frutas/química , Humanos , Hipolipemiantes/química , Insulina/sangue , Antagonistas da Insulina/administração & dosagem , Antagonistas da Insulina/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Ratos
10.
Funct Plant Biol ; 45(10): 1065-1072, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32291005

RESUMO

Damage-associated molecular patterns (DAMPs) have been studied recently to understand plant self-nonself recognition in response to attack by biotic and abiotic stresses. Extracellular DNA has emerged as a possible DAMP. As a DAMP DNA seems to function depending on the phylogenetic scale and has been tested in a few plant species. This study aimed to evaluate the possible role of self DNA (sDNA) as a DAMP by analysing changes in CpG DNA methylation and defence-related responses in lettuce (Lactuca sativa L.) as a model plant. sDNA and nonself DNA (nsDNA) from Capsicum chinense Murray (both species belong to the same clade, Asterids) stimulated aberrant seed germination and root growth in lettuce seedlings. Similar resultswere obtained with nsDNA obtained from Acaciella angustissima (Mill.) Britton & Rose plants (belonging to the clade Rosids I), although at significantly higher concentrations. Moreover, in most cases, this behaviour was correlated with hypomethylation of CpG DNA as well as defence responses measured as altered gene expression associated with oxidative burst and production of secondary metabolites (phenylpropanoids) related to coping with stress conditions. Our results suggested that extracellular and fragmented DNA has a role as a DAMP depending on phylogenetic closeness in plants as lettuce, inducing epigenetic, genetic and biochemical changes within the plant. The importance of our results is that, for the first time, they demonstrate that sDNA acts as a DAMP in plants, changing CpG DNA methylation levels as well as increasing the production of secondary metabolites associated with defence responses to stress.

11.
J Agric Food Chem ; 56(18): 8737-44, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18754663

RESUMO

Common beans ( Phaseolus vulgaris L.) contain a high proportion of undigested carbohydrates (NDC) that can be fermented in the large intestine to produce short-chain fatty acids (SCFA) such as acetate, propionate, and butyrate. The objective of the present study was to evaluate the composition and chemopreventive effect of a polysaccharide extract (PE) from cooked common beans ( P. vulgaris L) cv. Negro 8025 on azoxymethane (AOM) induced colon cancer in rats. The PE induced SCFA production with the highest butyrate concentrated in the cecum zone: 6.7 +/- 0.06 mmol/g of sample for PE treatment and 5.29 +/- 0.24 mmol/g of sample for PE + AOM treatment. The number of aberrant crypt foci (ACF) and the transcriptional expression of bax and caspase-3 were increased, and rb expression was decreased. The data suggest that PE decreased ACF and had an influence on the expression of genes involved in colon cancer for the action of butyrate concentration.


Assuntos
Azoximetano , Neoplasias do Colo/prevenção & controle , Phaseolus/química , Polissacarídeos/administração & dosagem , Polissacarídeos/química , Animais , Butiratos/análise , Ceco/química , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Expressão Gênica , Temperatura Alta , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...