Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 1029750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568083

RESUMO

Introduction: Quercetin (Que) is a potent anti-inflammatory and antioxidant flavonoid with cardioprotective potential. However, very little is known about the signaling pathways and gene regulatory proteins Que may interfere with, especially in diabetic cardiomyopathy. Therefore, we aimed to study the potential cardioprotective effects of Que on the cardiac phenotype of type 2 diabetes mellitus (T2DM) accompanied by obesity. Methods: For this experiment, we used Zucker Diabetic Fatty rats (fa/fa) and their age-matched lean controls (fa/+) that were treated with either vehicle or 20 mg/kg/day of Que for 6 weeks. Animals underwent echocardiographic (echo) examination before the first administration of Que and after 6 weeks. Results: After the initial echo examination, the diabetic rats showed increased E/A ratio, a marker of left ventricular (LV) diastolic dysfunction, in comparison to the control group which was selectively reversed by Que. Following the echo analysis, Que reduced LV wall thickness and exhibited an opposite effect on LV luminal area. In support of these results, the total collagen content measured by hydroxyproline assay was decreased in the LVs of diabetic rats treated with Que. The follow-up immunoblot analysis of proteins conveying cardiac remodeling pathways revealed that Que was able to interfere with cardiac pro-hypertrophic signaling. In fact, Que reduced relative protein expression of pro-hypertrophic transcriptional factor MEF2 and its counter-regulator HDAC4 along with pSer246-HDAC4. Furthermore, Que showed potency to decrease GATA4 transcription factor, NFAT3 and calcineurin, as well as upstream extracellular signal-regulated kinase Erk5 which orchestrates several pro-hypertrophic pathways. Discussion: In summary, we showed for the first time that Que ameliorated pro-hypertrophic signaling on the level of epigenetic regulation and targeted specific upstream pathways which provoked inhibition of pro-hypertrophic signals in ZDF rats. Moreover, Que mitigated T2DM and obesity-induced diastolic dysfunction, therefore, might represent an interesting target for future research on novel cardioprotective agents.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Disfunção Ventricular Esquerda , Ratos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Epigênese Genética , Ratos Zucker , Cardiomegalia/genética , Disfunção Ventricular Esquerda/complicações , Obesidade/complicações
2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555696

RESUMO

The aim of this study was to investigate the effects of quercetin (QUE) on the testicular architecture as well as markers of oxidative, inflammatory, and apoptotic profile of male gonads in Zucker diabetic fatty (ZDF) rats suffering from Type 2 diabetes mellitus in the absence or presence of obesity. QUE was administered orally at a dose of 20 mg/kg/day for 6 weeks. Morphometric analysis revealed that QUE treatment led to an improvement in testicular appearance, particularly in the case of Obese ZDF rats. Furthermore, a significant stabilization of the antioxidant capacity (p < 0.05), superoxide dismutase and catalase activity (p < 0.01), with a concomitant decrease in lipid peroxidation (p < 0.05) were observed in Obese ZDF animals exposed to QUE. Our data also indicate a significant decline in the levels of interleukin (IL)-1 (p < 0.05), IL-6 (p < 0.01) and tumor necrosis factor alpha (p < 0.001) following QUE supplementation to Obese ZDF rats in comparison with their respective control. Finally, a significant down-regulation of the pro-apoptotic BAX protein (p < 0.0001) was observed in Obese ZDF rats administered with QUE, while a significant Bcl-2 protein overexpression (p < 0.0001) was recorded in Lean ZDF animals when compared to their untreated control. As such, our results suggest that QUE is a potentially beneficial agent to reduce testicular damage in ZDF rats with Type 2 diabetes mellitus by decreasing oxidative stress, chronic inflammation, and excessive cell loss through apoptosis.


Assuntos
Antioxidantes , Diabetes Mellitus Tipo 2 , Animais , Ratos , Masculino , Antioxidantes/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos Zucker , Obesidade/complicações , Obesidade/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638845

RESUMO

Helium inhalation induces cardioprotection against ischemia/reperfusion injury, the cellular mechanism of which remains not fully elucidated. Extracellular vesicles (EVs) are cell-derived, nano-sized membrane vesicles which play a role in cardioprotective mechanisms, but their function in helium conditioning (HeC) has not been studied so far. We hypothesized that HeC induces fibroblast-mediated cardioprotection via EVs. We isolated neonatal rat cardiac fibroblasts (NRCFs) and exposed them to glucose deprivation and HeC rendered by four cycles of 95% helium + 5% CO2 for 1 h, followed by 1 h under normoxic condition. After 40 h of HeC, NRCF activation was analyzed with a Western blot (WB) and migration assay. From the cell supernatant, medium extracellular vesicles (mEVs) were isolated with differential centrifugation and analyzed with WB and nanoparticle tracking analysis. The supernatant from HeC-treated NRCFs was transferred to naïve NRCFs or immortalized human umbilical vein endothelial cells (HUVEC-TERT2), and a migration and angiogenesis assay was performed. We found that HeC accelerated the migration of NRCFs and did not increase the expression of fibroblast activation markers. HeC tended to decrease mEV secretion of NRCFs, but the supernatant of HeC or the control NRCFs did not accelerate the migration of naïve NRCFs or affect the angiogenic potential of HUVEC-TERT2. In conclusion, HeC may contribute to cardioprotection by increasing fibroblast migration but not by releasing protective mEVs or soluble factors from cardiac fibroblasts.


Assuntos
Movimento Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/fisiologia , Fibroblastos/efeitos dos fármacos , Hélio/farmacologia , Miocárdio/citologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Movimento Celular/fisiologia , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestrutura , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Wistar
4.
Antioxidants (Basel) ; 10(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573022

RESUMO

Catechins represent a group of polyphenols that possesses various beneficial effects in the cardiovascular system, including protective effects in cardiac ischemia-reperfusion (I/R) injury, a major pathophysiology associated with ischemic heart disease, myocardial infarction, as well as with cardioplegic arrest during heart surgery. In particular, catechin, (-)-epicatechin, and epigallocatechin gallate (EGCG) have been reported to prevent cardiac myocytes from I/R-induced cell damage and I/R-associated molecular changes, finally, resulting in improved cell viability, reduced infarct size, and improved recovery of cardiac function after ischemic insult, which has been widely documented in experimental animal studies and cardiac-derived cell lines. Cardioprotective effects of catechins in I/R injury were mediated via multiple molecular mechanisms, including inhibition of apoptosis; activation of cardioprotective pathways, such as PI3K/Akt (RISK) pathway; and inhibition of stress-associated pathways, including JNK/p38-MAPK; preserving mitochondrial function; and/or modulating autophagy. Moreover, regulatory roles of several microRNAs, including miR-145, miR-384-5p, miR-30a, miR-92a, as well as lncRNA MIAT, were documented in effects of catechins in cardiac I/R. On the other hand, the majority of results come from cell-based experiments and healthy small animals, while studies in large animals and studies including comorbidities or co-medications are rare. Human studies are lacking completely. The dosages of compounds also vary in a broad scale, thus, pharmacological aspects of catechins usage in cardiac I/R are inconclusive so far. Therefore, the aim of this focused review is to summarize the most recent knowledge on the effects of catechins in cardiac I/R injury and bring deep insight into the molecular mechanisms involved and dosage-dependency of these effects, as well as to outline potential gaps for translation of catechin-based treatments into clinical practice.

5.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360749

RESUMO

Receptor-interacting protein kinase 3 (RIP3) is a convergence point of multiple signalling pathways, including necroptosis, inflammation and oxidative stress; however, it is completely unknown whether it underlies acute myocardial ischemia/reperfusion (I/R) injury. Langendorff-perfused rat hearts subjected to 30 min ischemia followed by 10 min reperfusion exhibited compromised cardiac function which was not abrogated by pharmacological intervention of RIP3 inhibition. An immunoblotting analysis revealed that the detrimental effects of I/R were unlikely mediated by necroptotic cell death, since neither the canonical RIP3-MLKL pathway (mixed lineage kinase-like pseudokinase) nor the proposed non-canonical molecular axes involving CaMKIIδ-mPTP (calcium/calmodulin-dependent protein kinase IIδ-mitochondrial permeability transition pore), PGAM5-Drp1 (phosphoglycerate mutase 5-dynamin-related protein 1) and JNK-BNIP3 (c-Jun N-terminal kinase-BCL2-interacting protein 3) were activated. Similarly, we found no evidence of the involvement of NLRP3 inflammasome signalling (NOD-, LRR- and pyrin domain-containing protein 3) in such injury. RIP3 inhibition prevented the plasma membrane rupture and delayed mPTP opening which was associated with the modulation of xanthin oxidase (XO) and manganese superoxide dismutase (MnSOD). Taken together, this is the first study indicating that RIP3 regulates early reperfusion injury via oxidative stress- and mitochondrial activity-related effects, rather than cell loss due to necroptosis.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Masculino , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Wistar
6.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443451

RESUMO

Diabetes mellitus is characterized by tissue oxidative damage and impaired microcirculation, as well as worsened erythrocyte properties. Measurements of erythrocyte deformability together with determination of nitric oxide (NO) production and osmotic resistance were used for the characterization of erythrocyte functionality in lean (control) and obese Zucker diabetic fatty (ZDF) rats of two age categories. Obese ZDF rats correspond to prediabetic (younger) and diabetic (older) animals. As antioxidants were suggested to protect erythrocytes, we also investigated the potential effect of quercetin (20 mg/kg/day for 6 weeks). Erythrocyte deformability was determined by the filtration method and NO production using DAF-2DA fluorescence. For erythrocyte osmotic resistance, we used hemolytic assay. Erythrocyte deformability and NO production deteriorated during aging-both were lower in older ZDF rats than in younger ones. Three-way ANOVA indicates improved erythrocyte deformability after quercetin treatment in older obese ZDF rats only, as it was not modified or deteriorated in both (lean and obese) younger and older lean animals. NO production by erythrocytes increased post treatment in all experimental groups. Our study indicates the potential benefit of quercetin treatment on erythrocyte properties in condition of diabetes mellitus. In addition, our results suggest potential age-dependency of quercetin effects in diabetes that deserve additional research.


Assuntos
Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Eritrócitos/metabolismo , Quercetina/uso terapêutico , Animais , Antioxidantes , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Deformação Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Osmose , Estresse Oxidativo , Quercetina/farmacologia , Ratos Zucker
7.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923282

RESUMO

Several mechanisms may contribute to cardiovascular pathology associated with diabetes, including dysregulation of matrix metalloproteinases (MMPs). Quercetin (QCT) is a substance with preventive effects in treatment of cardiovascular diseases and diabetes. The aim of the present study was to explore effects of chronic QCT administration on changes in heart function in aged lean and obese Zucker Diabetic Fatty (ZDF) rats and that in association with MMPs. Signaling underlying effects of diabetes and QCT were also investigated. In the study, we used one-year-old lean and obese ZDF rats treated for 6 weeks with QCT. Results showed that obesity worsened heart function and this was associated with MMP-2 upregulation, MMP-28 downregulation, and inhibition of superoxide dismutases (SODs). Treatment with QCT did not modulate diabetes-induced changes in heart function and MMPs. However, QCT activated Akt kinase and reversed effects of diabetes on SODs inhibition. In conclusion, worsened heart function due to obesity involved changes in MMP-2 and MMP-28 and attenuation of antioxidant defense by SOD. QCT did not have positive effects on improvement of heart function or modulation of MMPs. Nevertheless, its application mediated activation of adaptive responses against oxidative stress through Akt kinase and prevention of diabetes-induced negative effects on antioxidant defense by SODs.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Metaloproteinase 2 da Matriz/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Envelhecimento , Animais , Antioxidantes/farmacologia , Glicemia/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinases da Matriz Secretadas/genética , Ratos , Ratos Zucker
8.
Free Radic Biol Med ; 169: 446-477, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905865

RESUMO

Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.


Assuntos
Antioxidantes , Doenças Cardiovasculares , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio
9.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114290

RESUMO

Iron is an essential mineral participating in different functions of the organism under physiological conditions. Numerous biological processes, such as oxygen and lipid metabolism, protein production, cellular respiration, and DNA synthesis, require the presence of iron, and mitochondria play an important role in the processes of iron metabolism. In addition to its physiological role, iron may be also involved in the adaptive processes of myocardial "conditioning". On the other hand, disorders of iron metabolism are involved in the pathological mechanisms of the most common human diseases and include a wide range of them, such as type 2 diabetes, obesity, and non-alcoholic fatty liver disease, and accelerate the development of atherosclerosis. Furthermore, iron also exerts potentially deleterious effects that may be manifested under conditions of ischemia/reperfusion (I/R) injury, myocardial infarction, heart failure, coronary artery angioplasty, or heart transplantation, due to its involvement in reactive oxygen species (ROS) production. Moreover, iron has been recently described to participate in the mechanisms of iron-dependent cell death defined as "ferroptosis". Ferroptosis is a form of regulated cell death that is distinct from apoptosis, necroptosis, and other types of cell death. Ferroptosis has been shown to be associated with I/R injury and several other cardiac diseases as a significant form of cell death in cardiomyocytes. In this review, we will discuss the role of iron in cardiovascular diseases, especially in myocardial I/R injury, and protective mechanisms stimulated by different forms of "conditioning" with a special emphasis on the novel targets for cardioprotection.


Assuntos
Ferro/metabolismo , Doenças Metabólicas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Ferroptose , Homeostase , Humanos , Doenças Metabólicas/complicações , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111033

RESUMO

Quercetin (QCT) is a natural polyphenolic compound enriched in human food, mainly in vegetables, fruits and berries. QCT and its main derivatives, such as rhamnetin, rutin, hyperoside, etc., have been documented to possess many beneficial effects in the human body including their positive effects in the cardiovascular system. However, clinical implications of QCT and its derivatives are still rare. In the current paper we provide a complex picture of the most recent knowledge on the effects of QCT and its derivatives in different types of cardiac injury, mainly in ischemia-reperfusion (I/R) injury of the heart, but also in other pathologies such as anthracycline-induced cardiotoxicity or oxidative stress-induced cardiac injury, documented in in vitro and ex vivo, as well as in in vivo experimental models of cardiac injury. Moreover, we focus on cardiac effects of QCT in presence of metabolic comorbidities in addition to cardiovascular disease (CVD). Finally, we provide a short summary of clinical studies focused on cardiac effects of QCT. In general, it seems that QCT and its metabolites exert strong cardioprotective effects in a wide range of experimental models of cardiac injury, likely via their antioxidant, anti-inflammatory and molecular pathways-modulating properties; however, ageing and presence of lifestyle-related comorbidities may confound their beneficial effects in heart disease. On the other hand, due to very limited number of clinical trials focused on cardiac effects of QCT and its derivatives, clinical data are inconclusive. Thus, additional well-designed human studies including a high enough number of patients testing different concentrations of QCT are needed to reveal real therapeutic potential of QCT in CVD. Finally, several negative or controversial effects of QCT in the heart have been reported, and this should be also taken into consideration in QCT-based approaches aimed to treat CVD in humans.


Assuntos
Cardiotônicos/química , Cardiotônicos/farmacologia , Quercetina/química , Quercetina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cardiotônicos/metabolismo , Traumatismos Cardíacos/tratamento farmacológico , Humanos , Plantas/química , Quercetina/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico
11.
Molecules ; 25(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906454

RESUMO

Background: Quercetin (QCT) was shown to exert beneficial cardiovascular effects in young healthy animals. The aim of the present study was to determine cardiovascular benefits of QCT in older, 6-month and 1-year-old Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). Methods: Lean (fa/+) and obese (fa/fa) ZDF rats of both ages were treated with QCT for 6 weeks (20 mg/kg/day). Isolated hearts were exposed to ischemia-reperfusion (I/R) injury (30 min/2 h). Endothelium-dependent vascular relaxation was measured in isolated aortas. Expression of selected proteins in heart tissue was detected by Western blotting. Results: QCT reduced systolic blood pressure in both lean and obese 6-month-old rats but had no effect in 1-year-old rats. Diabetes worsened vascular relaxation in both ages. QCT improved vascular relaxation in 6-month-old but worsened in 1-year-old obese rats and had no impact in lean controls of both ages. QCT did not exert cardioprotective effects against I/R injury and even worsened post-ischemic recovery in 1-year-old hearts. QCT up-regulated expression of eNOS in younger and PKCε expression in older rats but did not activate whole PI3K/Akt pathway. Conclusions: QCT might be beneficial for vascular function in diabetes type 2; however, increasing age and/or progression of diabetes may confound its vasculoprotective effects. QCT seems to be inefficient in preventing myocardial I/R injury in type 2 diabetes and/or higher age. Impaired activation of PI3K/Akt kinase pathway might be, at least in part, responsible for failing cardioprotection in these subjects.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Quercetina/uso terapêutico , Análise de Variância , Animais , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos
12.
Parasite ; 26: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901308

RESUMO

The measurement of respiratory chain enzyme activities is an integral part of basic research as well as for specialized examinations in clinical biochemistry. Most of the enzymes use ubiquinone as one of their substrates. For current in vitro measurements, several hydrophilic analogues of native ubiquinone are used depending on the enzyme and the workplace. We tested five readily available commercial analogues and we showed that Coenzyme Q2 is the most suitable for the measurement of all tested enzyme activities. Use of a single substrate in all laboratories for several respiratory chain enzymes will improve our ability to compare data, in addition to simplifying the stock of chemicals required for this type of research.


Assuntos
Trypanosomatina/enzimologia , Ubiquinona/análogos & derivados , Transporte de Elétrons , Ubiquinona/metabolismo
13.
Curr Med Chem ; 25(3): 355-366, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28595547

RESUMO

BACKGROUND: Ischemia-reperfusion (I/R) injury of the heart as a consequence of myocardial infarction or cardiac surgery represents a serious clinical problem. One of the most prominent mechanisms of I/R injury is the development of oxidative stress in the heart. In this regard, I/R has been shown to enhance the production of reactive oxygen/nitrogen species in the heart which lead to the imbalance between the pro-oxidants and antioxidant capacities of the endogenous radical-scavenging systems. OBJECTIVES: Increasing the antioxidant capacity of the heart by the administration of exogenous antioxidants is considered beneficial for the heart exposed to I/R. N-acetylcysteine (NAC) and Nmercaptopropionylglycine (MPG) are two sulphur containing amino acid substances, which belong to the broad category of exogenous antioxidants that have been tested for their protective potential in cardiac I/R injury. OBSERVATIONS: Pretreatment of hearts with both NAC and MPG has demonstrated that these agents attenuate the I/R-induced alterations in sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils in addition to improving cardiac function. While experimental studies have revealed promising data suggesting beneficial effects of NAC and MPG in cardiac I/R injury, the results of clinical trials are not conclusive because both positive and no effects of these substances have been reported on the post-ischemic recovery of heart following cardiac surgery or myocardial infarction. CONCLUSION: It is concluded that both NAC and MPG exert beneficial effects in preventing the I/Rinduced injury; however, further studies are needed to establish their effectiveness in reversing the I/R-induced abnormalities in the heart.


Assuntos
Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Coração/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Tiopronina/uso terapêutico , Acetilcisteína/química , Animais , Antioxidantes/química , Coração/fisiopatologia , Humanos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Tiopronina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...