Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 41(31): 6652-6672, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34168008

RESUMO

A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow toward, and connect with, six extraocular muscles in a stereotyped pattern, to control eye movements. The signaling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS). Our research has demonstrated that the manipulation of α2-chn signaling in the zebrafish embryo leads to ocular motor axon wiring defects, although the signaling cascades regulated by α2-chn remain poorly understood. Here, we demonstrate that several cytoskeletal regulatory proteins-collapsin response mediator protein 2 (CRMP2; encoded by the gene dpysl2), stathmin1, and stathmin 2-bind to α2-CHN. dpysl2, stathmin1, and especially stathmin2 are expressed by ocular motor neurons. We find that the manipulation of dpysl2 and of stathmins in zebrafish larvae leads to defects in both the axon wiring of the ocular motor system and the optokinetic reflex, impairing horizontal eye movements. Knockdowns of these molecules in zebrafish larvae of either sex caused axon guidance phenotypes that included defasciculation and ectopic branching; in some cases, these phenotypes were reminiscent of DRS. chn1 knock-down phenotypes were rescued by the overexpression of CRMP2 and STMN1, suggesting that these proteins act in the same signaling pathway. These findings suggest that CRMP2 and stathmins signal downstream of α2-CHN to orchestrate ocular motor axon guidance and to control eye movements.SIGNIFICANCE STATEMENT The precise control of eye movements is crucial for the life of vertebrate animals, including humans. In humans, this control depends on the arrangement of nerve wiring of the ocular motor system, composed of three nerves and six muscles, a system that is conserved across vertebrate phyla. Mutations in the protein alpha2-chimaerin have previously been shown to cause eye movement disorders (squint) and axon wiring defects in humans. Our recent work has unraveled how alpha2-chimaerin coordinates axon guidance of the ocular motor system in animal models. In this article, we demonstrate key roles for the proteins CRMP2 and stathmin 1/2 in the signaling pathway orchestrated by alpha2-chimaerin, potentially giving insight into the etiology of eye movement disorders in humans.


Assuntos
Orientação de Axônios/fisiologia , Quimerina 1/metabolismo , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Músculos Oculomotores/inervação , Estatmina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Quimerina 1/genética , Síndrome da Retração Ocular/genética , Movimentos Oculares , Transdução de Sinais/fisiologia , Peixe-Zebra
2.
Mol Neuropsychiatry ; 5(1): 42-51, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31019917

RESUMO

Ketamine, a noncompetitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect and is used for patients experiencing treatment-resistant depression. We carried out a time-dependent targeted mass spectrometry-based metabolomics profiling analysis combined with a quantitative based on in vivo 15N metabolic labeling proteome comparison of ketamine- and vehicle-treated mice. The metabolomics and proteomics datasets were used to further elucidate ketamine's mode of action on the gamma-aminobutyric acid (GABA)ergic and glutamatergic systems. In addition, myelin basic protein levels were analyzed by Western Blot. We found altered GABA, glutamate and glutamine metabolite levels and ratios as well as increased levels of putrescine and serine - 2 positive modulators of the NMDAR. In addition, GABA receptor (GABAR) protein levels were reduced, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit Gria2 protein levels were increased upon ketamine treatment. The significantly altered metabolite and protein levels further significantly correlated with the antidepressant-like behavior, which was assessed using the forced swim test. In conclusion and in line with previous research, our data indicate that ketamine impacts the AMPAR subunit Gria2 and results in decreased GABAergic inhibitory neurotransmission leading to increased excitatory neuronal activity.

3.
Sci Adv ; 4(9): eaas9365, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255140

RESUMO

LmrA is a bacterial ATP-binding cassette (ABC) multidrug exporter that uses metabolic energy to transport ions, cytotoxic drugs, and lipids. Voltage clamping in a Port-a-Patch was used to monitor electrical currents associated with the transport of monovalent cationic HEPES+ by single-LmrA transporters and ensembles of transporters. In these experiments, one proton and one chloride ion are effluxed together with each HEPES+ ion out of the inner compartment, whereas two sodium ions are transported into this compartment. Consequently, the sodium-motive force (interior negative and low) can drive this electrogenic ion exchange mechanism in cells under physiological conditions. The same mechanism is also relevant for the efflux of monovalent cationic ethidium, a typical multidrug transporter substrate. Studies in the presence of Mg-ATP (adenosine 5'-triphosphate) show that ion-coupled HEPES+ transport is associated with ATP-bound LmrA, whereas ion-coupled ethidium transport requires ATP binding and hydrolysis. HEPES+ is highly soluble in a water-based environment, whereas ethidium has a strong preference for residence in the water-repelling plasma membrane. We conclude that the mechanism of the ABC transporter LmrA is fundamentally related to that of an ion antiporter that uses extra steps (ATP binding and hydrolysis) to retrieve and transport membrane-soluble substrates from the phospholipid bilayer.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Farmacorresistência Bacteriana , Etídio/farmacocinética , HEPES/farmacocinética , Concentração de Íons de Hidrogênio , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Bicamadas Lipídicas/metabolismo , Magnésio/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Técnicas de Patch-Clamp , Fosfolipídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sódio/metabolismo
4.
J Biol Chem ; 293(12): 4244-4261, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29343516

RESUMO

Lysosome function is essential in cellular homeostasis. In addition to its recycling role, the lysosome has recently been recognized as a cellular signaling hub. We have shown in mammary epithelial cells, both in vivo and in vitro, that signal transducer and activator of transcription 3 (Stat3) modulates lysosome biogenesis and can promote the release of lysosomal proteases that culminates in cell death. To further investigate the impact of Stat3 on lysosomal function, we conducted a proteomic screen of changes in lysosomal membrane protein components induced by Stat3 using an iron nanoparticle enrichment strategy. Our results show that Stat3 activation not only elevates the levels of known membrane proteins but results in the appearance of unexpected factors, including cell surface proteins such as annexins and flotillins. These data suggest that Stat3 may coordinately regulate endocytosis, intracellular trafficking, and lysosome biogenesis to drive lysosome-mediated cell death in mammary epithelial cells. The methodologies described in this study also provide significant improvements to current techniques used for the purification and analysis of the lysosomal proteome.


Assuntos
Células Epiteliais/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteoma/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Morte Celular , Células Cultivadas , Células Epiteliais/citologia , Feminino , Glândulas Mamárias Animais/citologia , Proteômica , Transdução de Sinais
5.
Sci Rep ; 7(1): 15788, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150633

RESUMO

Fewer than 50% of all patients with major depressive disorder (MDD) treated with currently available antidepressants (ADs) show full remission. Moreover, about one third of the patients suffering from MDD does not respond to conventional ADs and develop treatment-resistant depression (TRD). Ketamine, a non-competitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect, especially in patients suffering from TRD. Hippocampi of ketamine-treated mice were analysed by metabolome and proteome profiling to delineate ketamine treatment-affected molecular pathways and biosignatures. Our data implicate mitochondrial energy metabolism and the antioxidant defense system as downstream effectors of the ketamine response. Specifically, ketamine tended to downregulate the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) metabolite ratio which strongly correlated with forced swim test (FST) floating time. Furthermore, we found increased levels of enzymes that are part of the 'oxidative phosphorylation' (OXPHOS) pathway. Our study also suggests that ketamine causes less protein damage by rapidly decreasing reactive oxygen species (ROS) production and lend further support to the hypothesis that mitochondria have a critical role for mediating antidepressant action including the rapid ketamine response.


Assuntos
Antidepressivos/uso terapêutico , Antioxidantes/metabolismo , Metabolismo Energético , Ketamina/uso terapêutico , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Análise Discriminante , Metabolismo Energético/efeitos dos fármacos , Hipocampo/metabolismo , Análise dos Mínimos Quadrados , Camundongos Endogâmicos C57BL , Análise Multivariada , Fosforilação Oxidativa , Fosforilação , Fatores de Tempo
6.
Proteomics ; 16(4): 576-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26621492

RESUMO

Saccharomyces bayanus var. uvarum plays an important role in the fermentation of red wine from the D.O. Ribera del Duero. This is due to the special organoleptic taste that this yeast gives the wines and their ability to ferment at low temperature. To determine the molecular factors involved in the fermentation process at low temperature, a differential proteomic approach was performed by using 2D-DIGE, comparing, qualitatively and quantitatively, the profiles obtained at 13 and 25°C. A total of 152 protein spots were identified. We detected proteins upregulated at 13°C that were shown to be related to temperature stress, the production of aromatic compounds involved in the metabolism of amino acids, and the production of fusel alcohols and their derivatives, each of which is directly related to the quality of the wines. To check the temperature effects, an aromatic analysis by GC-MS was performed. The proteomic and "aromatomic" results are discussed in relation to the oenological properties of S. bayanus var. uvarum.


Assuntos
Proteínas Fúngicas/metabolismo , Saccharomyces/metabolismo , Vinho/microbiologia , Temperatura Baixa , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Aromáticos/metabolismo , Proteoma/metabolismo , Proteômica , Eletroforese em Gel Diferencial Bidimensional
7.
Int J Mol Sci ; 15(9): 16719-40, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25244019

RESUMO

Spermatozoa are more efficient at supporting normal embryonic development than spermatids, their immature, immediate precursors. This suggests that the sperm acquires the ability to support embryonic development during spermiogenesis (spermatid to sperm maturation). Here, using Xenopus laevis as a model organism, we performed 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry analysis of differentially expressed proteins between sperm and spermatids in order to identify factors that could be responsible for the efficiency of the sperm to support embryonic development. Furthermore, benefiting from the availability of egg extracts in Xenopus, we also tested whether the chromatin of sperm could attract different egg factors compared to the chromatin of spermatids. Our analysis identified: (1) several proteins which were present exclusively in sperm; but not in spermatid nuclei and (2) numerous egg proteins binding to the sperm (but not to the spermatid chromatin) after incubation in egg extracts. Amongst these factors we identified many chromatin-associated proteins and transcriptional repressors. Presence of transcriptional repressors binding specifically to sperm chromatin could suggest its preparation for the early embryonic cell cycles, during which no transcription is observed and suggests that sperm chromatin has a unique protein composition, which facilitates the recruitment of egg chromatin remodelling factors. It is therefore likely that the acquisition of these sperm-specific factors during spermiogenesis makes the sperm chromatin suitable to interact with the maternal factors and, as a consequence, to support efficient embryonic development.


Assuntos
Cromatina/metabolismo , Proteínas do Ovo/metabolismo , Proteínas Nucleares/metabolismo , Interações Espermatozoide-Óvulo , Espermátides/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Eletroforese em Gel de Poliacrilamida , Feminino , Immunoblotting , Masculino , Espectrometria de Massas , Proteínas Nucleares/isolamento & purificação , Ligação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , Extratos de Tecidos , Proteínas de Xenopus/isolamento & purificação , Xenopus laevis/metabolismo
8.
Curr Protoc Protein Sci ; 75: 22.2.1-22.2.17, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24510675

RESUMO

2-D DIGE relies on pre-electrophoretic labeling of samples with one of three spectrally distinct fluorescent dyes, followed by electrophoresis of all samples in one 2-D gel. The dye-labeled samples are then viewed individually by scanning the gel at different wavelengths, which circumvents problems with gel-to-gel variation and spot matching between gels. Image analysis programs are used to generate volume ratios for each spot, which essentially describe the intensity of a particular spot in each test sample, and thus enable protein abundance level changes to be identified and quantified. This unit describes the 2-D DIGE procedure including sample preparation from various cell types, labeling of proteins, and points to consider in the downstream processing of fluorescently labeled samples.


Assuntos
Proteínas/análise , Proteômica/métodos , Eletroforese em Gel Diferencial Bidimensional/métodos , Corantes Fluorescentes , Proteínas/química , Proteínas/isolamento & purificação
9.
Proteomics ; 8(5): 948-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18246571

RESUMO

2-DE is an important tool in quantitative proteomics. Here, we compare the deep purple (DP) system with DIGE using both a traditional and the SameSpots approach to gel analysis. Missing values in the traditional approach were found to be a significant issue for both systems. SameSpots attempts to address the missing value problem. SameSpots was found to increase the proportion of low volume data for DP but not for DIGE. For all the analysis methods applied in this study, the assumptions of parametric tests were met. Analysis of the same images gave significantly lower noise with SameSpots (over traditional) for DP, but no difference for DIGE. We propose that SameSpots gave lower noise with DP due to the stabilisation of the spot area by the common spot outline, but this was not seen with DIGE due to the co-detection process which stabilises the area selected. For studies where measurement of small abundance changes is required, a cost-benefit analysis highlights that DIGE was significantly cheaper regardless of the analysis methods. For studies analysing large changes, DP with SameSpots could be an effective alternative to DIGE but this will be dependent on the biological noise of the system under investigation.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Proteômica , Animais , Eletroforese em Gel Bidimensional/economia , Fluorescência , Camundongos , Pectobacterium carotovorum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...