Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Analyst ; 148(18): 4373-4385, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37594446

RESUMO

Optimal oncological results and patient outcomes are achieved in surgery for early breast cancer with breast conserving surgery (BCS) where this is appropriate. A limitation of BCS occurs when cancer is present at, or close, to the resection margin - termed a 'positive' margin - and re-excision is recommended to reduce recurrence rate. This is occurs in 17% of BCS in the UK and there is therefore a critical need for a way to assess margin status intraoperatively to ensure complete excision with adequate margins at the first operation. This study presents the potential of high wavenumber (HWN) Raman spectroscopy to address this. Freshly excised specimens from thirty patients undergoing surgery for breast cancer were measured using a surface Raman probe, and a multivariate classification model to predict normal versus tumour was developed from the data. This model achieved 77.1% sensitivity and 90.8% specificity following leave one patient out cross validation, with the defining features being differences in water content and lipid versus protein content. This demonstrates the feasibility of HWN Raman spectroscopy to facilitate future intraoperative margin assessment at specific locations. Clinical utility of the approach will require further research.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Feminino , Análise Espectral Raman , Neoplasias da Mama/cirurgia , Margens de Excisão , Sorogrupo
2.
Xenobiotica ; 52(8): 770-785, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36314242

RESUMO

 The therapeutic concept of antibody drug conjugates (ADCs) is to selectively target tumour cells with small molecule cytotoxic drugs to maximise cell kill benefit and minimise healthy tissue toxicity.An ADC generally consists of an antibody that targets a protein on the surface of tumour cells chemically linked to a warhead small molecule cytotoxic drug.To deliver the warhead to the tumour cell, the antibody must bind to the target protein and in general be internalised into the cell. Following internalisation, the cytotoxic agent can be released in the endosomal or lysosomal compartment (via different mechanisms). Diffusion or transport out of the endosome or lysosome allows the cytotoxic drug to express its cell-killing pharmacology. Alternatively, some ADCs (e.g. EDB-ADCs) rely on extracellular cleavage releasing membrane permeable warheads.One potentially important aspect of the ADC mechanism is the 'bystander effect' whereby the cytotoxic drug released in the targeted cell can diffuse out of that cell and into other (non-target expressing) tumour cells to exert its cytotoxic effect. This is important as solid tumours tend to be heterogeneous and not all cells in a tumour will express the targeted protein.The combination of large and small molecule aspects in an ADC poses significant challenges to the disposition scientist in describing the ADME properties of the entire molecule.This article will review the ADC landscape and the ADME properties of successful ADCs, with the aim of outlining best practice and providing a perspective of how the field can further facilitate the discovery and development of these important therapeutic modalities.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacocinética , Imunoconjugados/farmacocinética , Neoplasias/tratamento farmacológico
3.
Clin Pharmacol Ther ; 112(3): 562-572, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35598119

RESUMO

Transporters contribute to renal elimination of drugs; therefore drug disposition can be impacted if transporters are inhibited by comedicant drugs. Regulatory agencies have provided guidelines to assess potential drug-drug interaction (DDI) risk for renal organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 and 2-K (MATE1/2-K) transporters. Despite this, there are challenges with translating in vitro data using currently available tools to obtain a quantitative assessment of DDI risk in the clinic. Given the high number of drugs and new molecular entities showing in vitro inhibition toward OCT2 and/or MATE1/2-K and the lack of translation to clinically significant effects, it is reasonable to question whether the current in vitro assay design and modeling practice has led to unnecessary clinical evaluation. The aim of this review is to assess and discuss available in vitro and clinical data along with prediction models intended to provide clinical context of risk, including static models proposed by regulatory agencies and physiologically-based pharmacokinetic models, in order to identify best practices and areas of future opportunity. This analysis highlights that different in vitro assay designs, including substrate and cell systems used, strongly influence the derived concentration of drug producing 50% inhibition values and contribute to high variability observed across laboratories. Furthermore, the lack of sensitive index substrates coupled with specific inhibitors for individual transporters necessitates the use of complex models to evaluate clinical DDI risk.


Assuntos
Rim , Proteínas de Transporte de Cátions Orgânicos , Interações Medicamentosas , Células HEK293 , Humanos , Rim/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Eliminação Renal
4.
Mol Pharm ; 19(1): 172-187, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34890209

RESUMO

A physiologically based pharmacokinetic model was developed to describe the tissue distribution kinetics of a dendritic nanoparticle and its conjugated active pharmaceutical ingredient (API) in plasma, liver, spleen, and tumors. Tumor growth data from MV-4-11 tumor-bearing mice were incorporated to investigate the exposure/efficacy relationship. The nanoparticle demonstrated improved antitumor activity compared to the conventional API formulation, owing to the extended released API concentrations at the site of action. Model simulations further enabled the identification of critical parameters that influence API exposure in tumors and downstream efficacy outcomes upon nanoparticle administration. The model was utilized to explore a range of dosing schedules and their effect on tumor growth kinetics, demonstrating the improved antitumor activity of nanoparticles with less frequent dosing compared to the same dose of naked APIs in conventional formulations.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/farmacocinética , Nanopartículas/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Distribuição Tecidual , Resultado do Tratamento
5.
J Med Chem ; 64(20): 15189-15213, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34647738

RESUMO

Optimization of a series of azabenzimidazoles identified from screening hit 2 and the information gained from a co-crystal structure of the azabenzimidazole-based lead 6 bound to CDK9 led to the discovery of azaindoles as highly potent and selective CDK9 inhibitors. With the goal of discovering a highly selective and potent CDK9 inhibitor administrated intravenously that would enable transient target engagement of CDK9 for the treatment of hematological malignancies, further optimization focusing on physicochemical and pharmacokinetic properties led to azaindoles 38 and 39. These compounds are highly potent and selective CDK9 inhibitors having short half-lives in rodents, suitable physical properties for intravenous administration, and the potential to achieve profound but transient inhibition of CDK9 in vivo.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinase 9 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
6.
J Med Chem ; 63(24): 15564-15590, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33306391

RESUMO

A CDK9 inhibitor having short target engagement would enable a reduction of Mcl-1 activity, resulting in apoptosis in cancer cells dependent on Mcl-1 for survival. We report the optimization of a series of amidopyridines (from compound 2), focusing on properties suitable for achieving short target engagement after intravenous administration. By increasing potency and human metabolic clearance, we identified compound 24, a potent and selective CDK9 inhibitor with suitable predicted human pharmacokinetic properties to deliver transient inhibition of CDK9. Furthermore, the solubility of 24 was considered adequate to allow i.v. formulation at the anticipated effective dose. Short-term treatment with compound 24 led to a rapid dose- and time-dependent decrease of pSer2-RNAP2 and Mcl-1, resulting in cell apoptosis in multiple hematological cancer cell lines. Intermittent dosing of compound 24 demonstrated efficacy in xenograft models derived from multiple hematological tumors. Compound 24 is currently in clinical trials for the treatment of hematological malignancies.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Piridinas/química , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo , Cães , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos , Solubilidade , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
7.
CPT Pharmacometrics Syst Pharmacol ; 9(10): 561-570, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860732

RESUMO

Anticancer efficacy is driven not only by dose but also by frequency and duration of treatment. We describe a multiscale model combining cell cycle, cellular heterogeneity of B-cell lymphoma 2 family proteins, and pharmacology of AZD5991, a potent small-molecule inhibitor of myeloid cell leukemia 1 (Mcl-1). The model was calibrated using in vitro viability data for the MV-4-11 acute myeloid leukemia cell line under continuous incubation for 72 hours at concentrations of 0.03-30 µM. Using a virtual screen, we identified two schedules as having significantly different predicted efficacy and showed experimentally that a "short" schedule (treating cells for 6 of 24 hours) is significantly better able to maintain the rate of cell kill during treatment than a "long" schedule (18 of 24 hours). This work suggests that resistance can be driven by heterogeneity in protein expression of Mcl-1 alone without requiring mutation or resistant subclones and demonstrates the utility of mathematical models in efficiently identifying regimens for experimental exploration.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Compostos Macrocíclicos/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/patologia , Compostos Macrocíclicos/administração & dosagem , Compostos Macrocíclicos/uso terapêutico , Camundongos , Modelos Animais , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
10.
Nat Biomed Eng ; 4(4): 394-406, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988457

RESUMO

The inaccessibility of living bone marrow (BM) hampers the study of its pathophysiology under myelotoxic stress induced by drugs, radiation or genetic mutations. Here, we show that a vascularized human BM-on-a-chip (BM chip) supports the differentiation and maturation of multiple blood cell lineages over 4 weeks while improving CD34+ cell maintenance, and that it recapitulates aspects of BM injury, including myeloerythroid toxicity after clinically relevant exposures to chemotherapeutic drugs and ionizing radiation, as well as BM recovery after drug-induced myelosuppression. The chip comprises a fluidic channel filled with a fibrin gel in which CD34+ cells and BM-derived stromal cells are co-cultured, a parallel channel lined by human vascular endothelium and perfused with culture medium, and a porous membrane separating the two channels. We also show that BM chips containing cells from patients with the rare genetic disorder Shwachman-Diamond syndrome reproduced key haematopoietic defects and led to the discovery of a neutrophil maturation abnormality. As an in vitro model of haematopoietic dysfunction, the BM chip may serve as a human-specific alternative to animal testing for the study of BM pathophysiology.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/patologia , Hematopoese , Microfluídica/métodos , Animais , Antígenos CD34 , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Transplante de Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais , Microfluídica/instrumentação
11.
Clin Cancer Res ; 26(4): 922-934, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31699827

RESUMO

PURPOSE: Cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and potential therapeutic target for many cancers. Multiple nonselective CDK9 inhibitors have progressed clinically but were limited by a narrow therapeutic window. This work describes a novel, potent, and highly selective CDK9 inhibitor, AZD4573. EXPERIMENTAL DESIGN: The antitumor activity of AZD4573 was determined across broad cancer cell line panels in vitro as well as cell line- and patient-derived xenograft models in vivo. Multiple approaches, including integrated transcriptomic and proteomic analyses, loss-of-function pathway interrogation, and pharmacologic comparisons, were employed to further understand the major mechanism driving AZD4573 activity and to establish an exposure/effect relationship. RESULTS: AZD4573 is a highly selective and potent CDK9 inhibitor. It demonstrated rapid induction of apoptosis and subsequent cell death broadly across hematologic cancer models in vitro, and MCL-1 depletion in a dose- and time-dependent manner was identified as a major mechanism through which AZD4573 induces cell death in tumor cells. This pharmacodynamic (PD) response was also observed in vivo, which led to regressions in both subcutaneous tumor xenografts and disseminated models at tolerated doses both as monotherapy or in combination with venetoclax. This understanding of the mechanism, exposure, and antitumor activity of AZD4573 facilitated development of a robust pharmacokinetic/PD/efficacy model used to inform the clinical trial design. CONCLUSIONS: Selective targeting of CDK9 enables the indirect inhibition of MCL-1, providing a therapeutic option for MCL-1-dependent diseases. Accordingly, AZD4573 is currently being evaluated in a phase I clinical trial for patients with hematologic malignancies (clinicaltrials.gov identifier: NCT03263637).See related commentary by Alcon et al., p. 761.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Apoptose/efeitos dos fármacos , Quinase 9 Dependente de Ciclina , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteômica
12.
Mol Cancer Ther ; 18(5): 909-919, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872381

RESUMO

Barasertib (AZD1152), a pro-drug of the highly potent and selective Aurora B kinase inhibitor AZD2811, showed promising clinical activity in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients administered as a 4-day infusion. To improve potential therapeutic benefit of Aurora B kinase inhibition, a nanoparticle formulation of AZD2811 has been developed to address limitations of repeated intravenous infusion. One of the challenges with the use of nanoparticles for chronic treatment of tumors is optimizing dose and schedule required to enable repeat administration to sustain tumor growth inhibition. AZD2811 gives potent cell growth inhibition across a range of DLBCL cells lines in vitro In vivo, repeat administration of the AZD2811 nanoparticle gave antitumor activity at half the dose intensity of AZD1152. Compared with AZD1152, a single dose of AZD2811 nanoparticle gave less reduction in pHH3, but increased apoptosis and reduction of cells in G1 and G2-M, albeit at later time points, suggesting that duration and depth of target inhibition influence the nature of the tumor cell response to drug. Further exploration of the influence of dose and schedule on efficacy revealed that AZD2811 nanoparticle can be used flexibly with repeat administration of 25 mg/kg administered up to 7 days apart being sufficient to maintain equivalent tumor control. Timing of repeat administration could be varied with 50 mg/kg every 2 weeks controlling tumor control as effectively as 25 mg/kg every week. AZD2811 nanoparticle can be administered with very different doses and schedules to inhibit DLBCL tumor growth, although maximal tumor growth inhibition was achieved with the highest dose intensities.


Assuntos
Acetanilidas/farmacologia , Aurora Quinase B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Acetanilidas/química , Animais , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Nanopartículas/química , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
13.
BMC Cancer ; 19(1): 86, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658617

RESUMO

BACKGROUND: Obesity increases breast cancer (BC) risk in post-menopausal women by mostly unknown molecular mechanisms which may partly be regulated by microRNAs (miRNAs). METHODS: We isolated RNA from paired benign and malignant biopsies from 83 BC patients and determined miRNA profiles in samples from 12 women at the extremes of the BMI distribution by RNA-seq. Candidates were validated in all samples. Associations between miR-10b expression and validated target transcript levels, and effects of targeted manipulation of miR-10b levels in a primary BC cell line on proliferation and invasion potential, were explored. RESULTS: Of the 148 miRNAs robustly expressed in breast tissues, the levels of miR-21, miR-10b, miR-451a, miR-30c, and miR-378d were significantly associated with presence of cancer. Of these, miR-10b showed a stronger down-regulation in the tumors of the obese subjects, as opposed to the lean. In ductal but not lobular tumors, significant inverse correlations were observed between the tumor levels of miR-10b and miR-30c and the mRNA levels of cancer-relevant target genes SRSF1, PIEZO1, MAPRE1, CDKN2A, TP-53 and TRA2B, as well as tumor grade. Suppression of miR-10b levels in BT-549 primary BC-derived cells increased cell proliferation and invasive capacity, while exogenous miR-10b mimic decreased invasion. Manipulation of miR-10b levels also inversely affected the mRNA levels of miR-10b targets BCL2L11, PIEZO1 and NCOR2. CONCLUSIONS: Our findings suggest that miR-10b may be a mediator between obesity and cancer in post-menopausal women, regulating several known cancer-relevant genes. MiR-10b expression may have diagnostic and therapeutic implications for the incidence and prognosis of BC in obese women.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Obesidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas
14.
Zookeys ; (788): 19-38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337821

RESUMO

A new firefly-mimicking lichen moth of the genus Hypoprepia, H.lampyroides Palting & Ferguson, sp. n., is described from the mountains of east-central Arizona and the Sierra Madre Occidental of Mexico. Hypoprepia Hübner, 1831 is a North American genus of lithosiine tiger moths, previously consisting of five species: H.fucosa Hübner, 1831 and H.miniata (Kirby, 1837), both of eastern and central North America; H.cadaverosa Strecker, 1878 from the Rocky Mountains into New Mexico and west Texas; H.inculta H. Edwards, 1882, a widespread western USA species and H.muelleri Dyar, 1907 from the vicinity of Mexico City. The latter is herein synonymized under H.inculta (= H.muelleri syn. n.), resulting in the total number of taxa in the genus unchanged at five.

15.
CPT Pharmacometrics Syst Pharmacol ; 7(3): 147-157, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280349

RESUMO

Translational pharmacokinetic (PK) models are needed to describe and predict drug concentration-time profiles in lung tissue at the site of action to enable animal-to-man translation and prediction of efficacy in humans for inhaled medicines. Current pulmonary PK models are generally descriptive rather than predictive, drug/compound specific, and fail to show successful cross-species translation. The objective of this work was to develop a robust compartmental modeling approach that captures key features of lung and systemic PK after pulmonary administration of a set of 12 soluble drugs containing single basic, dibasic, or cationic functional groups. The model is shown to allow translation between animal species and predicts drug concentrations in human lungs that correlate with the forced expiratory volume for different classes of bronchodilators. Thus, the pulmonary modeling approach has potential to be a key component in the prediction of human PK, efficacy, and safety for future inhaled medicines.


Assuntos
Broncodilatadores/administração & dosagem , Broncodilatadores/farmacocinética , Pulmão/fisiologia , Administração por Inalação , Administração Intravenosa , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Volume Expiratório Forçado , Humanos , Masculino , Modelos Animais , Modelos Biológicos , Ratos , Ratos Sprague-Dawley
17.
Breast ; 30: 101-104, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27668857

RESUMO

BACKGROUND: Management of micrometastasis in the sentinel node is a controversial topic. Most of the guidelines don't recommend further axillary treatment if micrometastasis are the only finding in the sentinel node. However, some evidence suggests that micrometastasis have significant effect on long term outcomes and therefore indicate systemic treatment. METHOD: Retrospective cohort study reviewing the management of patients with micrometastasis in the sentinel nodes. Two groups were compared, those who had further axillary clearance and those who had not. The primary endpoints were loco-regional recurrence and lymphedema rate. The secondary endpoints were distant metastasis rate, OS and DFS. RESULTS: 95 patients were found to have micrometastasis or ITC in the axillary SNB over a period of 10 years. Of those, 38 patients had axillary clearance after SNB, while 57 did not. Lymphedema rate was 18.4% in the axillary clearance group versus 0% in the no axillary clearance group (p < 0.001). The LRR event was rare therefore not compared. Distant metastasis rate was 7.01% in the SNB group versus 2.6% in the axillary clearance group. There were no mortalities in the axillary clearance group. This compares to 7.01% among the patients who didn't have axillary clearance. All the patients who died had developed distant metastasis as a cause of death. There was a difference in OS between the two groups in favor of the axillary clearance group (p = 0.004). DISCUSSION: Although not an indication for axillary clearance recent guidelines, micrometastasis and ITC found in the SNB are a sign of a biologically different disease. This important information should be taken in consideration when planning the adjuvant treatment in those patients among other factors considered.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/patologia , Excisão de Linfonodo/métodos , Linfedema/epidemiologia , Micrometástase de Neoplasia/patologia , Recidiva Local de Neoplasia/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Linfonodo Sentinela/patologia , Axila , Neoplasias da Mama/terapia , Carcinoma Ductal de Mama/terapia , Carcinoma Lobular/terapia , Estudos de Casos e Controles , Quimioterapia Adjuvante , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Linfonodos/patologia , Metástase Linfática , Mastectomia , Prognóstico , Radioterapia Adjuvante , Estudos Retrospectivos
19.
Toxicol Sci ; 137(2): 278-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24189134

RESUMO

Despite six decades of clinical experience with the polymyxin class of antibiotics, their dose-limiting nephrotoxicity remains difficult to predict due to a paucity of sensitive biomarkers. Here, we evaluate the performance of standard of care and next-generation biomarkers of renal injury in the detection and monitoring of polymyxin-induced acute kidney injury in male Han Wistar rats using colistin (polymyxin E) and a polymyxin B (PMB) derivative with reduced nephrotoxicity, PMB nonapeptide (PMBN). This study provides the first histopathological and biomarker analysis of PMBN, an important test of the hypothesis that fatty acid modifications and charge reductions in polymyxins can reduce their nephrotoxicity. The results indicate that alterations in a panel of urinary kidney injury biomarkers can be used to monitor histopathological injury, with Kim-1 and α-GST emerging as the most sensitive biomarkers outperforming clinical standards of care, serum or plasma creatinine and blood urea nitrogen. To enable the prediction of polymyxin-induced nephrotoxicity, an in vitro cytotoxicity assay was employed using human proximal tubule epithelial cells (HK-2). Cytotoxicity data in these HK-2 cells correlated with the renal toxicity detected via safety biomarker data and histopathological evaluation, suggesting that in vitro and in vivo methods can be incorporated within a screening cascade to prioritize polymyxin class analogs with more favorable renal toxicity profiles.


Assuntos
Antibacterianos/toxicidade , Colistina/toxicidade , Nefropatias/urina , Polimixina B/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Biomarcadores/urina , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colistina/administração & dosagem , Colistina/farmacocinética , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Diagnóstico Precoce , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Polimixina B/administração & dosagem , Polimixina B/farmacocinética , Polimixina B/toxicidade , Prognóstico , Ratos , Ratos Wistar
20.
Bioorg Med Chem Lett ; 23(24): 6789-93, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24211022

RESUMO

Targeting viral polymerases has been a proven and attractive strategy for antiviral drug discovery. Herein we describe our effort in improving the antiviral activity and physical properties of a series of benzothienoazepine compounds as respiratory syncytial virus (RSV) RNA polymerase inhibitors. The antiviral activity and spectrum of this class was significantly improved by exploring the amino substitution of the pyridine ring, resulting in the discovery of the most potent RSV A polymerase inhibitors reported to date.


Assuntos
RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Vírus Sinciciais Respiratórios/enzimologia , Proteínas Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Azepinas/síntese química , Azepinas/química , Azepinas/farmacologia , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Humanos , Relação Estrutura-Atividade , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...