Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321805

RESUMO

Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.

2.
J Exp Bot ; 74(21): 6662-6676, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37565685

RESUMO

Photosynthesis is increasingly becoming a recognized target for crop improvement. Phenotyping photosynthesis-related traits on field-grown material is a key bottleneck to progress here due to logistical barriers and short measurement days. Many studies attempt to overcome these challenges by phenotyping excised leaf material in the laboratory. To date there are no demonstrated examples of the representative nature of photosynthesis measurements performed on excised leaves relative to attached leaves in crops. Here, we tested whether standardized leaf excision on the day prior to phenotyping affected a range of common photosynthesis-related traits across crop functional types using tomato (C3 dicot), barley (C3 monocot), and maize (C4 monocot). Potentially constraining aspects of leaf physiology that could be predicted to impair photosynthesis in excised leaves, namely leaf water potential and abscisic acid accumulation, were not different between attached and excised leaves. We also observed non-significant differences in spectral reflectance and chlorophyll fluorescence traits between the treatments across the three species. However, we did observe some significant differences between traits associated with gas exchange and photosynthetic capacity across all three species. This study represents a useful reference for those who perform measurements of this nature and the differences reported should be considered in associated experimental design and statistical analyses.


Assuntos
Clorofila , Fotossíntese , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Ácido Abscísico , Especificidade da Espécie
3.
J Exp Bot ; 74(17): 5181-5197, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37347829

RESUMO

Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.


Assuntos
Oryza , Termotolerância , Oryza/fisiologia , Termotolerância/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fotossíntese/genética , Clorofila
4.
Plant Cell Environ ; 45(12): 3462-3475, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36098093

RESUMO

The leaf economics spectrum (LES) describes multivariate correlations in leaf structural, physiological and chemical traits, originally based on diverse C3 species grown under natural ecosystems. However, the specific contribution of C4 species to the global LES is studied less widely. C4 species have a CO2 concentrating mechanism which drives high rates of photosynthesis and improves resource use efficiency, thus potentially pushing them towards the edge of the LES. Here, we measured foliage morphology, structure, photosynthesis, and nutrient content for hundreds of genotypes of the C4 grass Miscanthus× giganteus grown in two common gardens over two seasons. We show substantial trait variations across M.× giganteus genotypes and robust genotypic trait relationships. Compared to the global LES, M.× giganteus genotypes had higher photosynthetic rates, lower stomatal conductance, and less nitrogen content, indicating greater water and photosynthetic nitrogen use efficiency in the C4 species. Additionally, tetraploid genotypes produced thicker leaves with greater leaf mass per area and lower leaf density than triploid genotypes. By expanding the LES relationships across C3 species to include C4 crops, these findings highlight that M.× giganteus occupies the boundary of the global LES and suggest the potential for ploidy to alter LES traits.


Assuntos
Ecossistema , Poaceae , Poaceae/genética , Tetraploidia , Triploidia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Nitrogênio
5.
Nat Commun ; 12(1): 6915, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824299

RESUMO

Crop losses caused by plant pathogens are a primary threat to stable food production. Stripe rust (Puccinia striiformis) is a fungal pathogen of cereal crops that causes significant, persistent yield loss. Stripe rust exhibits host species specificity, with lineages that have adapted to infect wheat and barley. While wheat stripe rust and barley stripe rust are commonly restricted to their corresponding hosts, the genes underlying this host specificity remain unknown. Here, we show that three resistance genes, Rps6, Rps7, and Rps8, contribute to immunity in barley to wheat stripe rust. Rps7 cosegregates with barley powdery mildew resistance at the Mla locus. Using transgenic complementation of different Mla alleles, we confirm allele-specific recognition of wheat stripe rust by Mla. Our results show that major resistance genes contribute to the host species specificity of wheat stripe rust on barley and that a shared genetic architecture underlies resistance to the adapted pathogen barley powdery mildew and non-adapted pathogen wheat stripe rust.


Assuntos
Hordeum/imunologia , Especificidade de Hospedeiro , Imunidade Vegetal , Proteínas de Plantas/imunologia , Adaptação Fisiológica , Alelos , Produtos Agrícolas/genética , Grão Comestível , Melhoramento Vegetal , Doenças das Plantas/imunologia , Puccinia , Receptores Imunológicos , Proteínas Ribossômicas , Triticum
6.
Plant Physiol ; 187(3): 1481-1500, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618065

RESUMO

Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.


Assuntos
Perfilação da Expressão Gênica , Técnicas Genéticas/instrumentação , Estudo de Associação Genômica Ampla , Aprendizado de Máquina , Sorghum/genética , Água/metabolismo , Características de História de Vida , Fenótipo , Sorghum/metabolismo
7.
Plant Cell Environ ; 44(7): 2066-2089, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33538010

RESUMO

Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.


Assuntos
Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Resposta ao Choque Térmico/fisiologia , Autofagia , Metabolismo dos Carboidratos , Fotossíntese
8.
Plant J ; 104(3): 839-855, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32777163

RESUMO

A key target for the improvement of Oryza sativa (rice) is the development of heat-tolerant varieties. This necessitates the development of high-throughput methodologies for the screening of heat tolerance. Progress has been made to this end via visual scoring and chlorophyll fluorescence; however, these approaches demand large infrastructural investments to expose large populations of adult plants to heat stress. To address this bottleneck, we investigated the response of the maximum quantum efficiency of photosystem II (PSII) to rapidly increasing temperatures in excised leaf segments of juvenile rice plants. Segmented models explained the majority of the observed variation in response. Coefficients from these models, i.e. critical temperature (Tcrit ) and the initial response (m1 ), were evaluated for their usability for forecasting adult heat tolerance, measured as the vegetative heat tolerance of adult rice plants through visual (stay-green) and chlorophyll fluorescence (ɸPSII) approaches. We detected substantial variation in heat tolerance of a randomly selected set of indica rice varieties. Both Tcrit and m1 were associated with measured heat tolerance in adult plants, highlighting their usability as high-throughput proxies. Variation in heat tolerance was associated with daytime respiration but not with photosynthetic capacity, highlighting a role for the non-photorespiratory release of CO2 in heat tolerance. To date, this represents the first published instance of genetic variation in these key gas-exchange traits being quantified in response to heat stress in a diverse set of rice accessions. These results outline an efficient strategy for screening heat tolerance and accentuate the need to focus on reduced rates of respiration to improve heat tolerance in rice.


Assuntos
Variação Genética , Resposta ao Choque Térmico/genética , Oryza/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Resposta ao Choque Térmico/fisiologia , Modelos Biológicos , Oryza/genética , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/fisiologia , Temperatura
9.
Annu Rev Plant Biol ; 70: 781-808, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035829

RESUMO

The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2 concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.


Assuntos
Produtos Agrícolas , Água , Cruzamento , Dióxido de Carbono , Fotossíntese , Folhas de Planta , Transpiração Vegetal
10.
Plant Cell Environ ; 42(6): 1847-1867, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30707443

RESUMO

Natural selection driven by water availability has resulted in considerable variation for traits associated with drought tolerance and leaf-level water-use efficiency (WUE). In Arabidopsis, little is known about the variation of whole-plant water use (PWU) and whole-plant WUE (transpiration efficiency). To investigate the genetic basis of PWU, we developed a novel proxy trait by combining flowering time and rosette water use to estimate lifetime PWU. We validated its usefulness for large-scale screening of mapping populations in a subset of ecotypes. This parameter subsequently facilitated the screening of water use and drought tolerance traits in a recombinant inbred line population derived from two Arabidopsis accessions with distinct water-use strategies, namely, C24 (low PWU) and Col-0 (high PWU). Subsequent quantitative trait loci mapping and validation through near-isogenic lines identified two causal quantitative trait loci, which showed that a combination of weak and nonfunctional alleles of the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes substantially reduced plant water use due to their control of flowering time. Crucially, we observed that reducing flowering time and consequently water use did not penalize reproductive performance, as such water productivity (seed produced per unit of water transpired) improved. Natural polymorphisms of FRI and FLC have previously been elucidated as key determinants of natural variation in intrinsic WUE (δ13 C). However, in the genetic backgrounds tested here, drought tolerance traits, stomatal conductance, δ13 C. and rosette water use were independent of allelic variation at FRI and FLC, suggesting that flowering is critical in determining lifetime PWU but not always leaf-level traits.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Flores/genética , Flores/fisiologia , Água/metabolismo , Aclimatação , Alelos , Proteínas de Arabidopsis/genética , Biomassa , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Técnicas de Genotipagem , Proteínas de Domínio MADS/genética , Fenótipo , Folhas de Planta/metabolismo , Locos de Características Quantitativas/genética , Locos de Características Quantitativas/fisiologia
11.
Genetics ; 211(3): 1075-1087, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622134

RESUMO

Sorghum (Sorghum bicolor L.) is a major food cereal for millions of people worldwide. The sorghum genome, like other species, accumulates deleterious mutations, likely impacting its fitness. The lack of recombination, drift, and the coupling with favorable loci impede the removal of deleterious mutations from the genome by selection. To study how deleterious variants impact phenotypes, we identified putative deleterious mutations among ∼5.5 M segregating variants of 229 diverse biomass sorghum lines. We provide the whole-genome estimate of the deleterious burden in sorghum, showing that ∼33% of nonsynonymous substitutions are putatively deleterious. The pattern of mutation burden varies appreciably among racial groups. Across racial groups, the mutation burden correlated negatively with biomass, plant height, specific leaf area (SLA), and tissue starch content (TSC), suggesting that deleterious burden decreases trait fitness. Putatively deleterious variants explain roughly one-half of the genetic variance. However, there is only moderate improvement in total heritable variance explained for biomass (7.6%) and plant height (average of 3.1% across all stages). There is no advantage in total heritable variance for SLA and TSC. The contribution of putatively deleterious variants to phenotypic diversity therefore appears to be dependent on the genetic architecture of traits. Overall, these results suggest that incorporating putatively deleterious variants into genomic models slightly improves prediction accuracy because of extensive linkage. Knowledge of deleterious variants could be leveraged for sorghum breeding through either genome editing and/or conventional breeding that focuses on the selection of progeny with fewer deleterious alleles.


Assuntos
Modelos Genéticos , Acúmulo de Mutações , Característica Quantitativa Herdável , Sorghum/genética , Biomassa , Frequência do Gene , Aptidão Genética , Mutação com Perda de Função , Sorghum/crescimento & desenvolvimento , Sorghum/metabolismo , Amido/genética
12.
Emerg Top Life Sci ; 3(2): 165-181, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523147

RESUMO

Predicted global climatic change will perturb the productivity of our most valuable crops as well as detrimentally impact ecological fitness. The most important aspects of climate change with respect to these effects relate to water availability and heat stress. Over multiple decades, the plant research community has amassed a highly comprehensive understanding of the physiological mechanisms that facilitate the maintenance of productivity in response to drought, flooding, and heat stress. Consequently, the foundations necessary to begin the development of elite crop varieties that are primed for climate change are in place. To meet the food and fuel security concerns of a growing population, it is vital that biotechnological and breeding efforts to harness these mechanisms are accelerated in the coming decade. Despite this, those concerned with crop improvement must approach such efforts with caution and ensure that potentially harnessed mechanisms are viable under the context of a dynamically changing environment.

13.
J Exp Bot ; 69(11): 2809-2821, 2018 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562306

RESUMO

The emergence of Arabidopsis as a model species and the availability of genetic and genomic resources have resulted in the identification and detailed characterization of abiotic stress signalling pathways. However, this has led only to limited success in engineering abiotic stress tolerance in crops. This is because there needs to be a deeper understanding of how to combine resistances to a range of stresses with growth and productivity. The natural variation and genomic resources of Arabidopsis thaliana (Arabidopsis) are a great asset to understand the mechanisms of multiple stress tolerances. One natural variant in Arabidopsis is the accession C24, and here we provide an overview of the increasing research interest in this accession. C24 is highlighted as a source of tolerance for multiple abiotic and biotic stresses, and a key accession to understand the basis of basal immunity to infection, high water use efficiency, and water productivity. Multiple biochemical, physiological, and phenological mechanisms have been attributed to these traits in C24, and none of them constrains productivity. Based on the uniqueness of C24, we postulate that the use of variation derived from natural selection in undomesticated species provides opportunities to better understand how complex environmental stress tolerances and resource use efficiency are co-ordinated.


Assuntos
Arabidopsis/fisiologia , Estresse Fisiológico , Arabidopsis/imunologia , Doenças das Plantas/imunologia , Estresse Fisiológico/imunologia , Água/metabolismo
14.
Plant Direct ; 2(1): e00035, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31245683

RESUMO

The ability of plants to acquire and use water is critical in determining life-history traits such as growth, flowering, and allocation of biomass into reproduction. In this context, a combination of functionally linked traits is essential for plants to respond to environmental changes in a coordinated fashion to maximize resource use efficiency. We analyzed different water-use traits in Arabidopsis ecotypes to identify functionally linked traits that determine water use and plant growth performance. Water-use traits measured were (i) leaf-level water-use efficiency (WUE i ) to evaluate the amount of CO 2 fixed relative to water loss per leaf area and (ii) short-term plant water use at the vegetative stage (VWU) as a measure of whole-plant transpiration. Previously observed phenotypic variance in VWU, WUE i and life-history parameters, highlighted C24 as a valuable ecotype that combined drought tolerance, preferential reproductive biomass allocation, high WUE i , and reduced water use. We therefore screened 35 Arabidopsis ecotypes for these parameters, in order to assess whether the phenotypic combinations observed in C24 existed more widely within Arabidopsis ecotypes. All parameters were measured on a short dehydration cycle. A segmented regression analysis was carried out to evaluate the plasticity of the drought response and identified the breakpoint as a reliable measure of drought sensitivity. VWU was largely dependent on rosette area, but importantly the drought sensitivity and plasticity measures were independent of the transpiring leaf surface. A breakpoint at high rSWC indicated a more drought-sensitive plant that closed stomata early during the dehydration cycle and consequently showed stronger plasticity in leaf-level WUE i parameters. None of the sensitivity, plasticity, or water-use measurements were able to predict the overall growth performance; however, there was a general trade-off between vegetative and reproductive biomass. PCA and hierarchical clustering revealed that C24 was unique among the 35 ecotypes in uniting all the beneficial water use and stress tolerance traits, while also maintaining above average plant growth. We propose that a short dehydration cycle, measuring drought sensitivity and VWU is a fast and reliable screen for plant water use and drought response strategies.

16.
Theor Appl Genet ; 129(4): 831-843, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26754419

RESUMO

KEY MESSAGE: We uncouple host and nonhost resistance in barley to Puccinia striiformis ff. spp. hordei and tritici . We isolate, fine map, and physically anchor Rps6 to chromosome 7H in barley. A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant may be considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on a single fingerprinted contig spanning a physical region of 267 kb. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harboring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Hordeum/genética , Doenças das Plantas/genética , Análise de Variância , Basidiomycota , Mapeamento Cromossômico , DNA de Plantas/genética , Marcadores Genéticos , Hordeum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Locos de Características Quantitativas , Análise de Sequência de DNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...