Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 27(7): 1043-51, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17403658

RESUMO

The carbon isotopic composition (delta(13)C) of wood and leaf cellulose of beech trees (Fagus sylvatica L.) was studied at 80 sites in northeastern France. We sampled sites with contrasting water balance, depending on soil type and precipitation. We tested the hypothesis that inter-site variations in plant delta(13)C reflect the spatial distribution of soil water availability, and we assessed whether delta(13)C could be used as a bioindicator of soil water availability. Patterns of variation in delta(13)C were compared with estimates of monthly water balance and with other soil characteristics. Between-site variability in delta(13)C was high (2.9 per thousand range in wood cellulose, 2.1 per thousand in leaf cellulose), but variation in water availability appeared to be only a minor factor contributing to this variation in delta(13)C. Unexpectedly, spatial variations in wood and leaf cellulose delta(13)C were significantly and positively related to soil fertility expressed by soil pH (r = 0.42 and 0.43, respectively) and cation content. On average, trees growing on acidic soils displayed 0.5 per thousand lower delta(13)C in both wood and leaf material than trees growing on neutral or calcareous soils. Our initial hypothesis of a strong negative relationship between delta(13)C and site water availability was not confirmed. In the study zone, neither wood nor leaf delta(13)C appeared to be a reliable bioindicator of spatial variations in water availability. Possible causes for the lack of a relationship are discussed. Our findings confirm, under natural conditions, the strong effect of soil fertility on water-use efficiency previously observed in experiments. This effect needs to be considered in isotopic studies involving different sites.


Assuntos
Fagus/metabolismo , Solo , Água/metabolismo , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecossistema , Fagus/crescimento & desenvolvimento , França , Geografia
3.
Tree Physiol ; 21(2-3): 183-91, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11303649

RESUMO

Container-grown walnut seedlings (Juglans regia L.) were subjected to competition with rye grass (Lolium perenne L.) and to a 2-week soil drying cycle. One and 2 weeks after the beginning of the drought treatment, H2 18O (delta approximately equals +100%) was added to the bottom layer of soil in the plant containers to create a vertical H2 18O gradient. Rye grass competition reduced aboveground and belowground biomass of the walnut seedlings by 60%, whereas drought had no effect. The presence of rye grass reduced the dry weight of walnut roots in the upper soil layer and caused a 50% reduction in lateral root length. Rye grass competition combined with the drought treatment reduced walnut leaf CO2 assimilation rate (A) and leaf conductance (gw) by 20 and 39%, respectively. Transpiration rates in rye grass, both at the leaf level and at the plant or tiller level, were higher than in walnut seedlings. Leaf intrinsic water-use efficiency (A/gw) of walnut seedlings increased in response to drought and no differences were observed between the single-species and mixed-species treatments, as confirmed by leaf carbon isotope discrimination measurements. Measurement of delta18O in soil and in plant xylem sap indicated that the presence of rye grass did not affect the vertical profile of soil water uptake by walnut seedlings. Walnut seedlings and rye grass withdrew water from the top and middle soil layers in well-watered conditions, whereas during the drought treatment, walnut seedlings obtained water from all soil layers, but rye grass took up water from the bottom soil layer only.


Assuntos
Lolium/fisiologia , Árvores/fisiologia , Água/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Magnoliopsida/fisiologia , Isótopos de Oxigênio , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Solo
4.
Oecologia ; 116(3): 316-330, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28308062

RESUMO

Functional aspects of biodiversity were investigated in a lowland tropical rainforest in French Guyana (5°2'N, annual precipitation 2200 mm). We assessed leaf δ15N as a presumptive indicator of symbiotic N2 fixation, and leaf and wood cellulose δ13C as an indicator of leaf intrinsic water-use efficiency (CO2 assimilation rate/leaf conductance for water vapour) in dominant trees of 21 species selected for their representativeness in the forest cover, their ecological strategy (pioneers or late successional stage species, shade tolerance) or their potential ability for N2 fixation. Similar measurements were made in trees of native species growing in a nearby plantation after severe perturbation (clear cutting, mechanical soil disturbance). Bulk soil δ15N was spatially quite uniform in the forest (range 3-5‰), whereas average leaf δ15N ranged from -0.3‰ to 3.5‰ in the different species. Three species only, Diplotropis purpurea, Recordoxylon speciosum (Fabaceae), and Sclerolobium melinonii (Caesalpiniaceae), had root bacterial nodules, which was also associated with leaf N concentrations higher than 20 mg g-1. Although nodulated trees displayed significantly lower leaf δ15N values than non-nodulated trees, leaf δ15N did not prove a straightforward indicator of symbiotic fixation, since there was a clear overlap of δ15N values for nodulated and non-nodulated species at the lower end of the δ15N range. Perturbation did not markedly affect the difference δ15Nsoil - δ15Nleaf, and thus the isotopic data provide no evidence of an alteration in the different N acquisition patterns. Extremely large interspecific differences in sunlit leaf δ13C were observed in the forest (average values from -31.4 to -26.7‰), corresponding to intrinsic water-use efficiencies (ratio CO2 assimilation rate/leaf conductance for water vapour) varying over a threefold range. Wood cellulose δ13C was positively related to total leaf δ13C, the former values being 2-3‰ higher than the latter ones. Leaf δ13C was not related to leaf δ15N at either intraspecific or interspecific levels. δ13C of sunlit leaves was highest in shade hemitolerant emergent species and was lower in heliophilic, but also in shade-tolerant species. For a given species, leaf δ13C did not differ between the pristine forest and the disturbed plantation conditions. Our results are not in accord with the concept of existence of functional types of species characterized by common suites of traits underlying niche differentiation; rather, they support the hypothesis that each trait leads to a separate grouping of species.

5.
Oecologia ; 99(3-4): 297-305, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28313884

RESUMO

Leaf gas exchange rates, predawn Ψwp and daily minimum Ψwm leaf water potentials were measured during a wet-to-dry season transition in pioneer (Jacaranda copaia, Goupia glabra andCarapa guianensis) and late stage rainforest tree species (Dicorynia guianensis andEperua falcata) growing in common conditions in artificial stands in French Guiana. Carbon isotope discrimination (Δ) was assessed by measuring the stable carbon isotope composition of the cellulose fraction of wood cores. The Δ values were 2.7‰ higher in the pioneer species than in the late stage species. The calculated time integratedC i values derived from the Δ values averaged 281 µmol mol-1 in the pioneers and 240 µmol mol-1 in the late stage species. The corresponding time-integrated values of intrinsinc water-use efficiency [ratio CO2 assimilation rate (A)/leaf conductance (g)] ranged from 37 to 47 mmol mol-1 in the pioneers and the values were 64 and 74 mmol mol-1 for the two late stage species. The high Δ values were associated-at least inJ. copaia-with high maximumg values and with high plant intrinsinc specific hydraulic conductance [C≔g/(Ψwm-Ψwp], which could reflect a high competitive ability for water and nutrient uptake in the absence of soil drought in the pioneers. A further clear discriminating trait of the pioneer species was the very sensitive stomatal response to drought in the soil, which might be associated with a high vulnerability to cavitation in these species. From a methodological point of view, the results show the relevance of Δ for distinguishing ecophysiological functional types among rainforest trees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA