Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 449, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438367

RESUMO

Tools available for reproducible, quantitative assessment of brain correspondence have been limited. We previously validated the anatomical fiducial (AFID) placement protocol for point-based assessment of image registration with millimetric (mm) accuracy. In this data descriptor, we release curated AFID placements for some of the most commonly used structural magnetic resonance imaging datasets and templates. The release of our accurate placements allows for rapid quality control of image registration, teaching neuroanatomy, and clinical applications such as disease diagnosis and surgical targeting. We release placements on individual subjects from four datasets (N = 132 subjects for a total of 15,232 fiducials) and 14 brain templates (4,288 fiducials), totalling more than 300 human rater hours of annotation. We also validate human rater accuracy of released placements to be within 1 - 2 mm (using more than 45,000 Euclidean distances), consistent with prior studies. Our data is compliant with the Brain Imaging Data Structure allowing for facile incorporation into neuroimaging analysis pipelines.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Encéfalo/diagnóstico por imagem , Controle de Qualidade
2.
Elife ; 112022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311645

RESUMO

Vision neuroscience has made great strides in understanding the hierarchical organization of object representations along the ventral visual stream (VVS). How VVS representations capture fine-grained visual similarities between objects that observers subjectively perceive has received limited examination so far. In the current study, we addressed this question by focussing on perceived visual similarities among subordinate exemplars of real-world categories. We hypothesized that these perceived similarities are reflected with highest fidelity in neural activity patterns downstream from inferotemporal regions, namely in perirhinal (PrC) and anterolateral entorhinal cortex (alErC) in the medial temporal lobe. To address this issue with functional magnetic resonance imaging (fMRI), we administered a modified 1-back task that required discrimination between category exemplars as well as categorization. Further, we obtained observer-specific ratings of perceived visual similarities, which predicted behavioural discrimination performance during scanning. As anticipated, we found that activity patterns in PrC and alErC predicted the structure of perceived visual similarity relationships among category exemplars, including its observer-specific component, with higher precision than any other VVS region. Our findings provide new evidence that subjective aspects of object perception that rely on fine-grained visual differentiation are reflected with highest fidelity in the medial temporal lobe.


Assuntos
Córtex Entorrinal , Lobo Temporal , Mapeamento Encefálico , Córtex Entorrinal/patologia , Imageamento por Ressonância Magnética , Reconhecimento Visual de Modelos , Estimulação Luminosa
3.
Hum Brain Mapp ; 40(14): 4163-4179, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175816

RESUMO

Accurate spatial correspondence between template and subject images is a crucial step in neuroimaging studies and clinical applications like stereotactic neurosurgery. In the absence of a robust quantitative approach, we sought to propose and validate a set of point landmarks, anatomical fiducials (AFIDs), that could be quickly, accurately, and reliably placed on magnetic resonance images of the human brain. Using several publicly available brain templates and individual participant datasets, novice users could be trained to place a set of 32 AFIDs with millimetric accuracy. Furthermore, the utility of the AFIDs protocol is demonstrated for evaluating subject-to-template and template-to-template registration. Specifically, we found that commonly used voxel overlap metrics were relatively insensitive to focal misregistrations compared to AFID point-based measures. Our entire protocol and study framework leverages open resources and tools, and has been developed with full transparency in mind so that others may freely use, adopt, and modify. This protocol holds value for a broad number of applications including alignment of brain images and teaching neuroanatomy.


Assuntos
Encéfalo/anatomia & histologia , Marcadores Fiduciais , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Humanos
4.
Neuroimage ; 167: 408-418, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29175494

RESUMO

The hippocampus, like the neocortex, has a morphological structure that is complex and variable in its folding pattern, especially in the hippocampal head. The current study presents a computational method to unfold hippocampal grey matter, with a particular focus on the hippocampal head where complexity is highest due to medial curving of the structure and the variable presence of digitations. This unfolding was performed on segmentations from high-resolution, T2-weighted 7T MRI data from 12 healthy participants and one surgical patient with epilepsy whose resected hippocampal tissue was used for histological validation. We traced a critical image feature composed of the hippocampal sulcus and stratum radiatum lacunosum-moleculare, (SRLM) in these images, then employed user-guided semi-automated techniques to detect and subsequently unfold the surrounding hippocampal grey matter. This unfolding was performed by solving Laplace's equation in three dimensions of interest (long-axis, proximal-distal, and laminar). The resulting 'unfolded coordinate space' provides an intuitive way of mapping the hippocampal subfields in 2D space (long-axis and proximal-distal), such that similar borders can be applied in the head, body, and tail of the hippocampus independently of variability in folding. This unfolded coordinate space was employed to map intracortical myelin and thickness in relation to subfield borders, which revealed intracortical myelin differences that closely follow the subfield borders used here. Examination of a histological resected tissue sample from a patient with epilepsy reveals that our unfolded coordinate system has biological validity, and that subfield segmentations applied in this space are able to capture features not seen in manual tracing protocols.


Assuntos
Hipocampo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...