Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 139: 105690, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716579

RESUMO

Multi-layer silicone composites are commonly used to mold deformable silicone vocal folds replicas. Nevertheless, so far the stress-strain characterisation of such composite specimens is limited to their effective Young's modulus (up to 40 kPa) characterising the elastic low-strain range, i.e. up to about 0.3. Therefore, in this work, the characterisation is extended to account for the non-linear strain range. Stress-strain curves on 6 single-layer and 34 multi-layer silicone specimens, with different layer stacking (serial, parallel, combined or arbitrary), are measured at room temperature using uni-axial tensile tests for strains up to 1.36, which amounts to about 4.5 times the extent of the linear low-strain range. Cubic polynomial and exponential two-parameter relationships are shown to provide accurate continuous fits (coefficient of determination R2≥99%) of the measured stress-strain data. It is then shown that the parameters can be a priori modelled as a constant or as a linear function of the effective low-strain Young's modulus for strains up to 1.55, i.e. 5 times the low-strain range. These a priori modelled parameter are confirmed by approximations of the best fit parameters for all assessed specimens as a function of the low-strain Young's modulus. Thus, the continuous stress-strain behaviour up to 1.55 can be predicted analytically from the effective low-strain Young's modulus either using the modelled parameters (R2≥85%) or the approximations of the best fit parameter sets (R2≥94%). Accurate stress-strain predictions are particularly useful for the design of composites with different composition and stacking. In addition, analytical expressions of the linear high-strain Young's modulus and the linear high-strain onset, again as a function of the effective low-strain Young's modulus, are formulated as well.


Assuntos
Silicones , Prega Vocal , Módulo de Elasticidade , Resistência à Tração
2.
Nanomaterials (Basel) ; 12(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630999

RESUMO

Nowadays, the incorporation of nanoparticles into thermal fluids has become one of the most suitable strategies for developing high-performance fluids. An unconventional improvement of thermo-physical properties was observed with the addition of 1% wt. of nanoparticles in different types of fluids, such as molten salts, allowing for the design of more thermally efficient systems using nanofluids. Despite this, there is a lack of knowledge about the effect that nanoparticles produce on the thermal stability and the decomposition kinetics of the base fluid. The present study performs IR- and UV-vis spectroscopy along with thermogravimetric analysis (TGA) of pure nitrate and nitrate based nanofluids with the presence of SiO2 and Al2O3 nanoparticles (1% wt.). The results obtained support that nanoparticles accelerate the nitrate to nitrite decomposition at temperatures below 500 °C (up to 4%), thus confirming the catalytic role of nanoparticles in nanofluids.

3.
Molecules ; 26(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673308

RESUMO

The use of adequate thermal energy storage (TES) systems is an efficient way to achieve thermal comfort in buildings reducing the cooling and heating demand. Besides, deploy phase change materials (PCM) to meet and enhance the TES needs is highly effective and widely studied. In this paper, a study of the degradation of two fatty acids is presented, capric and myristic acids, in order to evaluate whether their thermo-physical properties are affected throughout time during service. This was carried out by means of two different types of thermal treatments: degradation at constant temperature (thermal stability test), 60 °C during 100 h and 500 h, and degradation with heating and cooling cycling (thermal cycling stability), between a temperature range from 15 °C to 70 °C with 0.5 °C/min ramp during 500 and 1000 cycles. Despite no significant changes were measured for myristic acid, experimental results revealed a decrease of melting enthalpy of 6.6% in capric acid thermally treated for 500 h. Evidences of chemical degradation were found that might explain the decrease in thermophysical properties during use.


Assuntos
Transferência de Energia , Ácidos Graxos/química , Termodinâmica , Ácidos Graxos/metabolismo , Calefação , Temperatura Alta , Transição de Fase , Temperatura
4.
Materials (Basel) ; 12(13)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277264

RESUMO

Within the thermal energy storage field, one of the main challenges of this study is the development of new enhanced heat storage materials to be used in the building sector. The purpose of this study is the development of alkali-activated cements (AACs) with mechanical properties to store high amounts of heat. These AACs incorporate wastes from industrial glass process as well as microencapsulated phase change materials (mPCMs) to improve the thermal inertia of building walls, and accordingly respective energy savings. The research presented below consists of the exhaustive characterization of different AACs formulated from some waste generated during the proper management of municipal waste used as precursor. In this case study, AACs were formulated with the waste generated during the recycling of glass cullet, namely ceramic, stone, and porcelain (CSP), which is embedding a mPCM. The addition of mPCM was used as thermal energy storage (TES) material. The mechanical properties were also evaluated in order to test the feasibility of the use of the new formulated materials as a passive TES system. The results showed that the AAC obtained from CSP (precursors) mixed with mPCMs to obtain a thermal regulator material to be implemented in building walls was reached successfully. The material developed was resistant enough to perform as insulating panels. The formulated materials had high storage capacity depending on the PCM content. The durability of the mPCM shell was studied in contact with alkaline medium (NaOH 4 M) and no degradation was confirmed. Moreover, the higher the content of mPCM, the lower the mechanical properties expected, due to the porosity increments with mPCM incorporation in the formulations.

5.
Sci Total Environ ; 650(Pt 1): 267-276, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30199672

RESUMO

Reusing by-products is an important strategy to ensure the preservation of natural capital and climate change mitigation. This study aimed at evaluating the potential of cork granulates, a by-product of winery industry, as an organic carbon (OC) source for the treatment of hydroponic wastewaters. First, chemical characterization was performed and discussed. Secondly, batch studies were performed using synthetic hydroponic wastewater to understand the role of particle size (PS), pH and contact time (CT) on the release of OC. The suberin is the major compound, representing >50%. It was noticed that a variance on the content of suberin across species, within the same species and depending on the extraction part (belly, cork and back) could be expected. >60% of the sample is composed by carbon while <1% was nitrogen (high C:N ratio), indicating a low risk of releasing organic nitrogen. The statistical results suggested that the main effect of PS on the release of OC is greater than both, CT and pH. The chemical release of OC gets slower with time, being this effect greater as the PS increase. Moreover, estimations showed that using the 4 mm PS, the amount of water treated would be twice the amount if the 8 mm PS had been used. The PS seems to play an important role at design nature-based solutions (NBS) focused on denitrification. The surface response methodology indicates a significant negative interaction between CT and PS suggesting that the mathematical model could be used for further optimization studies. The reuse of organic by-products as filter media seems to be an economic and environmentally friendly alternative to enhance denitrification in NBS, while preserving natural capital. However, further real scale and long-term experiments are needed to validate cork's potential as an "internal" OC source for NBS.

6.
Materials (Basel) ; 9(1)2015 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28787812

RESUMO

A method for preparing and characterizing microencapsulated phase change materials (MPCM) was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample) and Micronal® DS 5008 X (BASF) samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS). Both samples presented a 6 µm average size and a spherical shape. Thermal energy storage (TES) capacities were 111.73 J·g-1 and 99.3 J·g-1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E), load at maximum displacement (Pm), and displacement at maximum load (hm), concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC's). This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC's emission after 10 min of heating, however peaks intensity of VOC's generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...