Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Dalton Trans ; 53(33): 13933-13949, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39099454

RESUMO

New and simple ligand design strategies for the preparation of versatile metal-based catalysts capable of operating under greener and eco-friendly conditions in several industrially attractive processes are in high demand for society development. We present the first nucleophilic addition of an organolithium to ketenimines which incorporates a stereogenic centre in an N-donor atom to prepare new enantiopure NNN-donor scorpionates. We have also verified its potential utility as a valuable scaffold for chirality induction through the preparation of inexpensive, non-toxic and asymmetric zinc complexes. The pro-ligands and the corresponding zinc-based complexes have been characterized by X-ray diffraction studies. DFT studies were carried out to rationalize the different complexation abilities of these pro-ligands. These complexes have proved to act as highly efficient catalysts for a variety of sustainable bioresourced processes that are industrially attractive, with a wide substrate scope. Thus, complex 7 behaves as a highly efficient initiator for the well-behaved living ring-opening polymerization (ROP) of rac-lactide under very mild conditions. The PLA materials produced exhibited enhanced levels of isoselectivity, comparable to the highest value reported so far for zinc-based catalysts (Pi = 0.88). In addition, the combination of 7 with onium halide salts functioned as a very active and selective catalyst for CO2 fixation into five-membered cyclic carbonates through the cycloaddition of CO2 into epoxides under very mild and solvent-free conditions, reaching very good to excellent conversions (TOF = 227 h-1). Furthermore, this bicomponent system exhibits a broad substrate scope and functional group tolerance, including mono- and di-substituted epoxides, as well as the very challenging bio-renewable tri-substituted terpene-derived cis/trans-limonene oxide, whose reaction proceeds with high stereoselectivity. Finally, complex 7 also achieved high activity and selectivity as a one-component initiator for the synthesis of poly(cyclohexene carbonate)s via ring-opening copolymerization (ROCOP) of cyclohexene oxide and CO2 under very soft conditions, affording materials with narrow dispersity values.

2.
ACS Catal ; 14(15): 11574-11583, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39119354

RESUMO

Low-valent cobalt complexes can promote intramolecular (3 + 2) cycloadditions of alkyne-tethered cyclopropenes to provide bicyclic systems containing highly substituted cyclopentadienyl moieties with electronically diverse functional groups. The adducts can be easily transformed into new types of CpRh(III) and CpIr(III) complexes, which show catalytic activity in several relevant transformations. Preliminary computational (DFT) and experimental studies provide relevant information on the mechanistic peculiarities of the cobalt-catalyzed process and allow us to rationalize its advantages over the homologous rhodium-promoted reaction.

3.
Org Lett ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109801

RESUMO

A visible-light-induced intramolecular diradical-mediated hydrogen atom transfer (DHAT) of primary, secondary, and tertiary C(sp3)-H bonds and subsequent cyclization is described. This transformation is enabled by triplet energy transfer upon Lewis acid coordination to alkyl-substituted arylvinylpyridines and gives access to a variety of benzocyclobutenes (>40 examples, 32-96% yield). Notably, tri- and tetrasubstituted olefins with tertiary C(sp3)-H bonds effectively delivered sterically hindered products with adjacent all-carbon quaternary centers. Mechanistic evidence and density functional theory (DFT) calculations suggest that Lewis acid coordination was crucial for the success by modulating the reactivity of the diradical intermediates to unlock a challenging carbon-to-carbon DHAT and subsequent cyclization with a rather low barrier, which allows the functionalization of benzylic C(sp3)-H bonds to construct otherwise inaccessible benzocyclobutenes.

4.
Inorg Chem ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102521

RESUMO

A bare lead atom is a σ-donor ligand capable of linearly bonding and stabilizing two units of a classical polyhydride complex, with a high-valent metal center. As a proof of concept, we have prepared and characterized the µ2-tetrylide complex (PiPr3)2H4Os═Pb═OsH4(PiPr3)2 in the reaction of OsH6(PiPr3)2 with Pb{N(SiMe3)2}2. Although the Pb-Os bonds exhibit electrostatic interaction, the main orbital interactions result from two dative σ bonds from the lead atom to the osmium centers. The latter also provide much weaker π-backdonations.

5.
Chem Sci ; 15(31): 12380-12387, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39118642

RESUMO

Quantum chemical calculations were carried out to quantitatively understand the origin of the Felkin-Anh(-Eisenstein) model, widely used to rationalize the π-facial stereoselectivity in the nucleophilic addition reaction to carbonyl groups directly attached to a stereogenic center. To this end, the possible approaches of cyanide to both (S)-2-phenylpropanal and (S)-3-phenylbutan-2-one have been explored in detail. With the help of the activation strain model of reactivity and the energy decomposition analysis method, it is found that the preference for the Felkin-Anh addition is mainly dictated by steric factors which manifest in a less destabilizing strain-energy rather than, as traditionally considered, in a lower Pauli repulsion. In addition, other factors such as the more favorable electrostatic interactions also contribute to the preferred approach of the nucleophile. Our work, therefore, provides a different, more complete rationalization, based on quantitative analyses, of the origin of this seminal and highly useful concept in organic chemistry.

6.
Angew Chem Int Ed Engl ; : e202410458, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172510

RESUMO

The synthesis of diradical organic compounds has garnered significant attention due to their thermally accessible spin inversion and optoelectronic properties. Yet, preparing such stable structures with high open-shell behavior remains challenging. Herein, we report the synthesis and properties of four π-extended, fused fluorene derivatives with high diradical character, taking advantage of a molecular design where the closed-shell does not include any Clar sextet, comparatively to a maximum of 5 in the corresponding open-shell state. This led to an unusual open-shell triplet ground state with an outstanding singlet-triplet energy difference (ΔEST) of ca. 19 kcal/mol, one of the highest values reported to date for an all-carbon conjugated scaffold. Incorporation of dithiafulvene units at each end of the molecule (at the five-membered rings) furnishes extended tetrathiafulvalenes (TTFs) undergoing reversible oxidations to the radical cation and diradical dication. The various pro-aromatic structures presented herein show highly localized spin density and a limited conjugation due to the confined π-electrons in the aromatic cycles, as supported by 1H NMR, UV-visible, EPR spectroscopy and DFT calculations.

7.
Angew Chem Int Ed Engl ; : e202409226, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995733

RESUMO

The synthesis of housanes derivatives from cyclopropenes is described. Under rhodium(II) catalysis, cyclopropenylvinyl carbinols can regioselectively generate a carbene intermediate which undergo an intramolecular cyclopropanation to form a housane, a skeleton with similar ring strain as the cyclopropene precursor. The procedure shows a remarkable broad scope and efficiency. Moreover, the method served to prepare man-made housane-containing terpene derivatives, which are not accessible by Nature.

8.
Inorg Chem ; 63(32): 14969-14980, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39072652

RESUMO

While metal-ligand cooperativity is well-known, studies on element-ligand cooperativity involving main group species are comparatively much less explored. In this study, we computationally designed a few geometrically constrained borylenes supported by different carbenes. Our density functional theory studies indicate that they possess enhanced nucleophilicity as well as electrophilicity, thus rendering them promising candidates for exhibiting borylene-ligand cooperativity. The cooperation between the boron and adjacent carbene centers facilitates different bond activation processes, including the cycloaddition of acetylene across the boron-carbene bond as well as B-H/Si-H bond activation reactions, which have been analyzed in detail. To the best of our knowledge, the borylenes proposed in this study represent the first examples of theoretically proposed geometrically constrained bis(carbene)-stabilized borylenes capable of cooperative activation of enthalpically strong bonds.

9.
Chem Sci ; 15(20): 7725-7731, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784752

RESUMO

Catalysts generated in situ by the combination of pyridine-hydrazone N,N-ligands and Pd(TFA)2 have been applied to the addition of arylboronic acids to formylphosphonate-derived hydrazones, yielding α-aryl α-hydrazino phosphonates in excellent enantioselectivities (96 → 99% ee). Subsequent removal of the benzyloxycarbonyl (Cbz) N-protecting group afforded key building blocks en route to appealing artificial peptides, herbicides and antitumoral derivatives. Experimental and computational data support a stereochemical model based on aryl-palladium intermediates in which the phosphono hydrazone coordinates in its Z-configuration, maximizing the interactions between the substrate and the pyridine-hydrazone ligand.

10.
JACS Au ; 4(5): 1744-1751, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818050

RESUMO

Conjugated dienes (1,3-dienes) are versatile and valuable chemical feedstocks that can be used as two-carbon or four-carbon synthons with vast applications across the chemical industry. However, the main challenge for their productive incorporation in synthetic routes is their chemo-, regio-, and stereoselective functionalization. Herein, we introduce a unified strategy for the 1,2-hydroarylation and 1,4-trifluoromethylarylation of 1,3-dienes using anilines in hexafluoroisopropanol. DFT calculations point toward a kinetically controlled process in both transformations, particularly in the trifluoromethylarylation, to explain the regiodivergent outcome. In addition, we perform an extensive program of functionalization and diversification of the products obtained, including hydrogenation, oxidation, cyclizations, or cross-coupling reactions, that allows access to a library of high-value species in a straightforward manner.

11.
Inorg Chem ; 63(19): 8642-8653, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690944

RESUMO

The synthesis, structure, and catalytic activity of a Ti(II)/Ti(III) inverted sandwich compound are presented in this study. Synthesis of the arene-bridged dititanium compound begins with the preparation of the titanium(IV) precursor [TiCl2(MesPDA)(thf)2] (MesPDA = N,N'-bis(2,4,6-trimethylphenyl)-o-phenylenediamide) (2). The reduction of 2 with sodium metal results in species [{Ti(MesPDA)(thf)}2(µ-Cl)3{Na}] (3) in oxidation state III. To achieve the lower oxidation state II, 2 undergoes reduction through alkylation with lithium cyclopentyl. This alkylation approach triggers a cascade of reactions, including ß-hydride abstraction/elimination, hydrogen evolution, and chemical reduction, to generate the Ti(II)/Ti(III) compound [Li(thf)4][(TiMesPDA)2(µ-η6: η6-C6H6)] (4). X-ray and EPR characterization confirms the mixed-valence states of the titanium species. Compound 4 catalyzes a mild, efficient, and regiospecific cyclotrimerization of alkynes to form 1,3,5-substituted arenes. Kinetic data support a mechanism involving a binuclear titanium arene compound, similar to compound 4, as the resting state. The active catalyst promotes the oxidative coupling of two alkynes in the rate-limiting step, followed by a rapid [4 + 2] cycloaddition to form the arene product. Computational analysis of the resting state for the cycloaddition of trimethylsilylacetylene indicates a thermodynamic preference for stabilizing the 1,3,5-arene within the space between the two [TiMesPDA] fragments, consistent with the observed regioselectivity.

12.
Chem Sci ; 15(16): 5929-5937, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665519

RESUMO

A straightforward and selective conversion of nitriles into highly substituted tetrahydropyridines, aminoketones or enamines by using allylmagnesium bromide as an addition partner (under neat conditions) and subsequent treatment with different aqueous-based hydrolysis protocols is reported. Refuting the conventional wisdom of the incompatibility of Grignard reagents with air and moisture, we herein report that the presence of water allows us to promote the chemoselective formation of the target tetrahydropyridines over other competing products (even in the case of highly challenging aliphatic nitriles). Moreover, the careful tuning of both the reaction media employed (acid or basic aqueous solutions for the hydrolysis protocol) and the electronic properties of the starting nitriles allowed us to design a multi-task system capable of producing either ß-aminoketones or enamines in a totally selective manner. Importantly, and for the first time in the chemistry of main-group polar organometallic reagents in non-conventional protic solvents (e.g., water), both experimental and computational studies showed that the excellent efficiency and selectivity observed in aqueous media cannot be replicated by using standard dry volatile organic solvents (VOCs) under inert atmosphere conditions.

13.
Angew Chem Int Ed Engl ; 63(19): e202402885, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38511969

RESUMO

We report on the synthesis and characterization of a series of (mostly) air-stable diorganyl bis(pyridylimino) isoindolide (BPI) aluminum complexes and their chemistry upon visible-light excitation. The redox non-innocent BPI pincer ligand allows for efficient charge transfer homolytic processes of the title compounds. This makes them a universal platform for the generation of carbon-centered radicals. The photo-induced homolytic cleavage of the Al-C bonds was investigated by means of stationary and transient UV/Vis spectroscopy, spin trapping experiments, as well as EPR and NMR spectroscopy. The experimental findings were supported by quantum chemical calculations. Reactivity studies enabled the utilization of the aluminum complexes as reactants in tin-free Giese-type reactions and carbonyl alkylations under ambient conditions, which both indicated radical-polar crossover behavior. A deeper understanding of the physical fundamentals and photochemical process was provided, furnishing in turn a new strategy to control the reactivity of bench-stable aluminum organometallics.

14.
J Org Chem ; 89(8): 5634-5649, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38554093

RESUMO

An unexpected Lewis acid-catalyzed carbohydrate rearrangement of a 1,5-bis-glycopyranoside to the product of a formal intramolecular C-aryl glycosylation reaction is reported. Mechanistic studies based mainly on intermediate trapping experiments and density functional theory (DFT) calculations reveal a cascade process involving three transient (a)cyclic oxocarbenium cations, the breaking of three single C(sp3)-O bonds, and the formation of three single bonds (i.e., exo-, endo-, and C-glycosidic bonds), leading to the 2,6-epoxybenzoxocine skeleton of bioactive natural glycoconjugates related to serjanione A and mimocaesalpin E. DFT calculations established that the generation of the pyran moiety embedded in the bridged benzoxocin ring system is likely to proceed through an unusual ring-closure of an ortho-quinone methide intermediate in which the attacking nucleophile is a carbonyl oxygen.

15.
Chemistry ; 30(30): e202400896, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507133

RESUMO

Directional bonding strategies guide the design of complex molecular architectures, yet challenges arise due to emergent behavior. Rigid structures face geometric constraints and sensitivity to mismatches, hindering the efficient assembly of molecular organic cages (MOCs). Harnessing intramolecular non-covalent interactions offers a promising solution, broadening geometrical possibilities and enhancing adaptability to boost assembly yields. However, identifying these interactions remains challenging, with their full potential sometimes latent until final assembly. This study explores these challenges by synthesizing boronic acid tripods with varied oxygen positions at the tripodal feet and investigating their role in assembling tetrahedral boronate MOCs. Our results reveal substantial differences in the assembly efficiency among tripods. While the building blocks with oxygen in the benzylic position relative to the central aromatic ring form the MOCs in high yields, those with the oxygen atom directly bound to the central aromatic ring, only yield traces. Through X-ray crystallography and DFT analyses, we elucidate how intramolecular interactions profoundly influence the geometry of the building blocks and cages in a relay-like fashion, highlighting the importance of considering intramolecular interactions in the rational design of (supra)molecular architectures.

16.
Chem Sci ; 15(11): 3980-3987, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487236

RESUMO

The origin of the electrophilicity of a series of cyclohexanones and benzaldehydes is investigated using the activation strain model and quantitative Kohn-Sham molecular orbital (MO) theory. We find that this electrophilicity is mainly determined by the electrostatic attractions between the carbonyl compound and the nucleophile (cyanide) along the entire reaction coordinate. Donor-acceptor frontier molecular orbital interactions, on which the current rationale behind electrophilicity trends is based, appear to have little or no significant influence on the reactivity of these carbonyl compounds.

17.
Chemphyschem ; 25(7): e202400022, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38269625

RESUMO

The factors governing the acceleration of the oxidative addition of methyl iodide to pincer rhodium(I)-complexes induced by coronene have been computationally explored in detail using quantum chemical methods. Both the parent reaction and the coronene-mediated process proceed via a stepwise SN2-type mechanism. It is found that the acceleration of the process derives from the formation of an initial supramolecular complex, mainly stabilized by electrostatic and π-π interactions, which significantly increases the electron richness of the complex. The impact of this effect on the reaction barrier has been quantitatively analyzed by applying the activation strain model in combination with the energy decomposition analysis method. In addition, the influence of other polycyclic aromatic hydrocarbons on the oxidative reaction has been also considered.

18.
Dalton Trans ; 53(7): 2917-2921, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38284266

RESUMO

Herein, we present that the radicals [Ph3PC(Me)EMes2]˙ (2Si and 2Ge) can be generated from the α-silylated and α-germylated phosphorus ylides Ph3PC(Me)E(Cl)Mes2 (1Si and 1Ge) through one-electron reduction with Jones' dimer (MesNacNacMg)2 in benzene. Although isolation of the free radicals was not possible, the products of the intramolecular addition of the radicals to a phenyl substituent of the phosphorus moiety, followed by subsequent reaction with 2Si or 2Ge to the isolated species 3Si and 3Ge, respectively, were observed. This transformation witnesses a dearomative 1,4-addition of tetryl radical species to the phenyl scaffold in a stereoselective anti-fashion.

19.
Chemistry ; 30(15): e202303977, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38224196

RESUMO

The factors governing 1,3-dipolar cycloaddition reactions involving C≡P-containing compounds are computationally explored in detail using quantum chemical tools. To this end, the parent process involving tBuN3 and tBuCP is analyzed and compared to the analogous reaction involving organometallic cyaphide complexes (metal=Au, Pt, Ge, Mg), in order to understand the role of the metal fragment in such transformations. It is found that while the metal fragment does not significantly influence the aromaticity of the corresponding concerted transition states or the regioselectivity of the transformation, it may modify the reactivity of the cyaphide complexes (i. e. Ge and Mg cyaphide complexes are comparatively more reactive). The computed reactivity trends and the factors behind the regioselectivity of the cycloaddition reaction are quantitatively analyzed with the help of the activation strain model in combination with the energy decomposition analysis method.

20.
Nat Chem ; 16(1): 63-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37770550

RESUMO

Despite recent achievements in the field of frustrated Lewis pairs (FLPs) for small molecule activations, the reversible activation and catalytic transformations of N-H-activated ammonia remain a challenge. Here we report on a rare combination of an aluminium Lewis acid and a carbon Lewis base. A so-called hidden FLP consisting of a phosphorus ylide featuring an aluminium fragment in the ortho position of a phenyl ring scaffold is introduced. Although the formation of the Lewis acid/base adduct is observed in the solid state, which at first glance leads to formally quenched FLP reactivity, we show that the title compound readily reacts with non-aqueous ammonia thermoneutrally and splits the N-H bond reversibly at ambient temperature. In addition, NH3 transfer reactions mediated by a main-group catalyst are presented. This proof-of-principle study is expected to initiate further activities in utilizing N-H-activated ammonia as a readily available, atom-economical nitrogen source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA