Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nutrients ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674825

RESUMO

Human milk promotes the growth of bifidobacteria in the infant gut. Adding bifidobacterial species to infant formula may contribute to increasing their presence in the gut of formula-fed infants. Therefore, the safety and anti-infectious effects of Bifidobacterium breve DSM32583, a breast milk isolate, were assessed in a pilot trial involving 3-month-old infants. The infants were randomly assigned to either the probiotic (PG) or the control (CG) groups. All the infants consumed the same formula, although it was supplemented with the strain (1 × 107 cfu/g of formula) in the PG. Overall, 160 infants (80 per group) finished the intervention. Infants in CG gained more weight compared to PG (p < 0.05), but the weights for age Z-scores at 6 months were within the normal distribution for this age group. The rates of infections affecting the gastrointestinal and respiratory tracts and antibiotic therapy were significantly lower in the PG. The bifidobacterial population and the level of short-chain fatty acids were higher (p < 0.05) in the fecal samples of PG infants. No adverse events related to formula consumption were observed. In conclusion, the administration of an infant formula with B. breve DSM32583 was safe and exerted potential beneficial effects on gut health.


Assuntos
Bifidobacterium breve , Fezes , Fórmulas Infantis , Leite Humano , Probióticos , Humanos , Lactente , Projetos Piloto , Probióticos/administração & dosagem , Leite Humano/microbiologia , Feminino , Masculino , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Aumento de Peso
2.
Front Microbiol ; 14: 1111652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865781

RESUMO

Introduction: Hyperuricemia and gout are receiving an increasing scientific and medical attention because of their relatively high prevalence and their association with relevant co-morbidities. Recently, it has been suggested that gout patients have an altered gut microbiota. The first objective of this study was to investigate the potential of some Ligilactobacillus salivarius strains to metabolize purine-related metabolites. The second objective was to evaluate the effect of administering a selected potential probiotic strain in individuals with a history of hyperuricemia. Methods: Inosine, guanosine, hypoxanthine, guanine, xanthine, and uric acid were identified and quantified by high-performance liquid chromatography analysis. The uptake and biotransformation of these compounds by a selection of L. salivarius strains were assessed using bacterial whole cells and cell-free extracts, respectively. The efficacy of L. salivarius CECT 30632 to prevent gout was assessed in a pilot randomized controlled clinical trial involving 30 patients with hyperuricemia and a history of recurrent gout episodes. Half of the patients consumed L. salivarius CECT 30632 (9 log10 CFU/day; probiotic group; n = 15) for 6 months while the remaining patients consumed allopurinol (100-300 mg/daily; control group; n = 15) for the same period. The clinical evolution and medical treatment received by the participants were followed, as well as the changes in several blood biochemical parameters. Results: L. salivarius CECT 30632 was the most efficient strain for inosine (100%), guanosine (100%) and uric acid (50%) conversion and, therefore, it was selected for the pilot clinical trial. In comparison with the control group, administration of L. salivarius CECT 30632 resulted in a significant reduction in the number of gout episodes and in the use of gout-related drugs as well as an improvement in some blood parameters related to oxidative stress, liver damage or metabolic syndrome. Conclusion: Regular administration of L. salivarius CECT 30632 reduced serum urate levels, the number of gout episodes and the pharmacological therapy required to control both hyperuricemia and gout episodes in individuals with a history of hyperuricemia and suffering from repeated episodes of gout.

3.
Nutrients ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678233

RESUMO

In this study, the probiotic potential of Ligilactobacillus salivarius CECT 30632 was assessed, including properties specifically related with gynecological targets. This strain displayed co-aggregative and antimicrobial activity against a wide spectrum of vaginal pathogens while being respectful with the growth of vaginal lactobacilli. The strain produced a high concentration of lactic acid and displayed α-amylase activity when assayed in vitro. It showed a noticeable survival rate after exposition to conditions similar to those present in the human digestive tract and was adhesive to both vaginal and intestinal cells. Subsequently, their capacity to increase pregnancy rates among women with habitual abortion or infertility of unknown origin was studied. Administration of L. salivarius CECT 30632 (~9 log10 CFU) daily for a maximum of six months to these women was safe and led to a successful pregnancy rate of 67.5% (80% and 55% for women with repetitive abortion and infertile women, respectively). Significant differences in Nugent score, vaginal pH, and vaginal concentrations of lactobacilli, TGF-ß, and VEFG were observed when the samples collected before the intervention were compared with those collected after the treatment among those women who got pregnant. Therefore, this strain can modulate the vaginal ecosystem and lead to better fertility outcomes.


Assuntos
Aborto Habitual , Infertilidade Feminina , Ligilactobacillus salivarius , Probióticos , Gravidez , Humanos , Feminino , Taxa de Gravidez , Infertilidade Feminina/terapia , Ecossistema , Lactobacillus , Imunomodulação , Probióticos/uso terapêutico
4.
Front Cell Infect Microbiol ; 12: 1038253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325465

RESUMO

The nasogastric enteral feeding tubes (NEFTs) used to feed preterm infants are commonly colonized by bacteria with the ability to form complex biofilms in their inner surfaces. Among them, staphylococci (mainly Staphylococcus epidermidis and Staphylococcus aureus) and some species belonging to the Family Enterobacteriaceae are of special concern since they can cause nosocomial infections in this population. NETF-associated biofilms can also include lactic acid bacteria (LAB), with the ability to compete with pathogenic species for nutrients and space. Ecological interactions among the main colonizers of these devices have not been explored yet; however, such approach could guide future strategies involving the pre-coating of the inner surfaces of NEFTs with well adapted LAB strains in order to reduce the rates of nosocomial infections in neonatal intensive care units (NICUs). In this context, this work implied the formation of dual-species biofilms involving one LAB strain (either Ligilactobacillus salivarius 20SNG2 or Limosilactobacillus reuteri 7SNG3) and one nosocomial strain (either Klebsiella pneumoniae 9SNG3, Serratia marcescens 10SNG3, Staphylococcus aureus 45SNG3 or Staphylococcus epidermidis 46SNG3). The six strains used in this study had been isolated from the inner surface of NEFTs. Changes in adhesion ability of the pathogens were characterized using a culturomic approach. Species interactions and structural changes of the resulting biofilms were analyzed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). No aggregation was observed in dual-species biofilms between any of the two LAB strains and either K. pneumoniae 9SNG3 or S. marcescens 10SNG3. In addition, biofilm thickness and volume were reduced, suggesting that both LAB strains can control the capacity to form biofilms of these enterobacteria. In contrast, a positive ecological relationship was observed in the combination L. reuteri 7SNG3-S. aureus 45SNG3. This relationship was accompanied by a stimulation of S. aureus matrix production when compared with its respective monospecies biofilm. The knowledge provided by this study may guide the selection of potentially probiotic strains that share the same niche with nosocomial pathogens, enabling the establishment of a healthier microbial community inside NEFTs.


Assuntos
Infecção Hospitalar , Lactobacillales , Infecções Estafilocócicas , Humanos , Recém-Nascido , Staphylococcus aureus/fisiologia , Recém-Nascido Prematuro , Biofilmes , Staphylococcus epidermidis , Enterobacteriaceae , Serratia marcescens , Klebsiella pneumoniae
5.
Sci Rep ; 12(1): 1367, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079053

RESUMO

Lactational mastitis is an excellent target to study possible interactions between HMOs, immune factors and milk microbiota due to the infectious and inflammatory nature of this condition. In this work, microbiological, immunological and HMO profiles of milk samples from women with (MW) or without (HW) mastitis were compared. Secretor status in women (based on HMO profile) was not associated to mastitis. DFLNH, LNFP II and LSTb concentrations in milk were higher in samples from HW than from MW among Secretor women. Milk from HW was characterized by a low bacterial load (dominated by Staphylococcus epidermidis and streptococci), high prevalence of IL10 and IL13, and low sialylated HMO concentration. In contrast, high levels of staphylococci, streptococci, IFNγ and IL12 characterized milk from MW. A comparison between subacute (SAM) and acute (AM) mastitis cases revealed differences related to the etiological agent (S. epidermidis in SAM; Staphylococcus aureus in AM), milk immunological profile (high content of IL10 and IL13 in SAM and IL2 in AM) and milk HMOs profile (high content of 3FL in SAM and of LNT, LNnT, and LSTc in AM). These results suggest that microbiological, immunological and HMOs profiles of milk are related to mammary health of women.


Assuntos
Mastite , Leite Humano , Oligossacarídeos/imunologia , Staphylococcus epidermidis/imunologia , Feminino , Humanos , Mastite/imunologia , Mastite/microbiologia , Microbiota , Leite Humano/imunologia , Leite Humano/microbiologia
6.
Nutrients ; 13(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959899

RESUMO

Breastfeeding is the best way to feed an infant, although it can also be a source of abiotic contaminants such as heavy metals or bisphenol A (BPA). The early life exposure to these compounds can lead to serious toxic effects in both the short and long-term. These substances can reach breast milk through the mother's habits, diet being one of the main routes of exposure. The aim of the present work was to analyse possible associations between the dietary habits of women and the content of major trace elements, BPA, fatty acids and lipids, and the microbiological and immunological profiles of human milk. Possible associations between major trace elements and BPA and the lipid, microbiological and immunological profiles were also analysed. The results of this study support that the microbiological composition of human milk is associated with the dietary habits of the women, and that the consumption of canned drinks is related to the presence of BPA in human milk. Furthermore, some relationships were found between the amount of major trace elements and the microbiological and immunological profile of the milk samples. Finally, the presence of BPA was associated with changes in the immunological profile of human milk.


Assuntos
Compostos Benzidrílicos/metabolismo , Comportamento Alimentar/fisiologia , Metabolismo dos Lipídeos , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Leite Humano/imunologia , Leite Humano/metabolismo , Fenóis/metabolismo , Bifenil Polibromatos/metabolismo , Oligoelementos/metabolismo , Adulto , Feminino , Humanos , Leite Humano/microbiologia
7.
Front Vet Sci ; 8: 666887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136556

RESUMO

Antibiotic use in swine production contributes to the emergence and spread of resistant bacteria, which poses a threat on human health. Therefore, alternative approaches must be developed. The objective of this work was the characterization of the probiotic properties of a Ligilactobacillus salivarius strain isolated from sow's milk and its application as an inoculated fermented feed to pregnant sows and piglets. The study was carried in a farm in which metaphylactic use of antimicrobials (including zinc oxide) was eliminated at the time of starting the probiotic intervention, which lasted for 2 years. Feces from 8-week-old piglets were collected before and after the treatment and microbiological and biochemical analyses were performed. The procedure led to an increase in the concentrations of clostridia and lactobacilli-related bacteria. Parallel, an increase in the concentration of butyrate, propionate and acetate was observed and a notable reduction in the presence of antibiotic resistant lactobacilli became apparent. In conclusion, replacement of antimicrobials by a microbiota-friendly approach was feasible and led to positive microbiological and biochemical changes in the enteric environment.

8.
Front Microbiol ; 12: 667832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140944

RESUMO

Bronchiolitis associated with the respiratory syncytial virus (RSV) is the leading cause of hospitalization among infants aged < 1 year. The main objective of this work was to assess the nasal and fecal microbiota and immune profiles in infants with RSV bronchiolitis, and to compare them with those of healthy infants. For this purpose, a total of 58 infants with RSV-positive bronchiolitis and 17 healthy infants (aged < 18 months) were recruited in this case-control study, which was approved by the Ethics Committee of the Hospital Gregorio Marañón. Nasal and fecal samples were obtained and submitted to bacterial microbiota analysis by 16S rDNA sequencing and to analysis of several immune factors related to inflammatory processes. Nasal samples in which Haemophilus and/or Moraxella accounted for > 20% of the total sequences were exclusively detected among infants of the bronchiolitis group. In this group, the relative abundances of Staphylococcus and Corynebacterium were significantly lower than in nasal samples from the control group while the opposite was observed for those of Haemophilus and Mannheimia. Fecal bacterial microbiota of infants with bronchiolitis was similar to that of healthy infants. Significant differences were obtained between bronchiolitis and control groups for both the frequency of detection and concentration of BAFF/TNFSF13B and sTNF.R1 in nasal samples. The concentration of BAFF/TNFSF13B was also significantly higher in fecal samples from the bronchiolitis group. In conclusion, signatures of RSV-associated bronchiolitis have been found in this study, including dominance of Haemophilus and a high concentration of BAFF/TNFSF13B, IL-8 and sTNF.R1 in nasal samples, and a high fecal concentration of BAFF/TNFSF13B.

9.
Nutrients ; 13(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673254

RESUMO

The gut is a pivotal organ in health and disease. The events that take place in the gut during early life contribute to the programming, shaping and tuning of distant organs, having lifelong consequences. In this context, the maternal gut plays a quintessence in programming the mammary gland to face the nutritional, microbiological, immunological, and neuroendocrine requirements of the growing infant. Subsequently, human colostrum and milk provides the infant with an impressive array of nutrients and bioactive components, including microbes, immune cells, and stem cells. Therefore, the axis linking the maternal gut, the breast, and the infant gut seems crucial for a correct infant growth and development. The aim of this article is not to perform a systematic review of the human milk components but to provide an insight of their extremely complex interactions, which render human milk a unique functional food and explain why this biological fluid still truly remains as a scientific enigma.


Assuntos
Mama/fisiologia , Desenvolvimento Infantil/fisiologia , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Intestinos/fisiologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Aleitamento Materno , Feminino , Humanos , Lactente , Recém-Nascido , Leite Humano/química , Leite Humano/fisiologia
10.
Life (Basel) ; 11(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546253

RESUMO

Holder pasteurization (HoP; 62.5 °C, 30 min) is commonly used to ensure the microbiological safety of donor human milk (DHM) but diminishes its nutritional properties. A high-temperature short-time (HTST) system was designed as an alternative for human milk banks. The objective of this study was to evaluate the effect of this HTST system on different nutrients and the bile salt stimulated lipase (BSSL) activity of DHM. DHM was processed in the HTST system and by standard HoP. Macronutrients were measured with a mid-infrared analyzer. Lactose, glucose, myo-inositol, vitamins and lipids were assayed using chromatographic techniques. BSSL activity was determined using a kit. The duration of HTST treatment had a greater influence on the nutrient composition of DHM than did the tested temperature. The lactose concentration and the percentage of phospholipids and PUFAs were higher in HTST-treated than in raw DHM, while the fat concentration and the percentage of monoacylglycerides and SFAs were lower. Other nutrients did not change after HTST processing. The retained BSSL activity was higher after short HTST treatment than that following HoP. Overall, HTST treatment resulted in better preservation of the nutritional quality of DHM than HoP because relevant thermosensitive components (phospholipids, PUFAs, and BSSL) were less affected.

11.
Nutrients ; 13(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419054

RESUMO

In this study, the cervicovaginal environment of women with reproductive failure (repetitive abortion, infertility of unknown origin) was assessed and compared to that of healthy fertile women. Subsequently, the ability of Ligilactobacillus salivarius CECT5713 to increase pregnancy rates in women with reproductive failure was evaluated. Vaginal pH and Nugent score were higher in women with reproductive failure than in fertile women. The opposite was observed regarding the immune factors TGF-ß 1, TFG-ß 2, and VEFG. Lactobacilli were detected at a higher frequency and concentration in fertile women than in women with repetitive abortion or infertility. The metataxonomic study revealed that vaginal samples from fertile women were characterized by the high abundance of Lactobacillus sequences, while DNA from this genus was practically absent in one third of samples from women with reproductive failure. Daily oral administration of L. salivarius CECT5713 (~9 log10 CFU/day) to women with reproductive failure for a maximum of 6 months resulted in an overall successful pregnancy rate of 56%. The probiotic intervention modified key microbiological, biochemical, and immunological parameters in women who got pregnant. In conclusion, L. salivarius CECT5713 has proved to be a good candidate to improve reproductive success in women with reproductive failure.


Assuntos
Aborto Espontâneo , Infertilidade , Lactobacillus/fisiologia , Vagina/microbiologia , Proteínas Adaptadoras de Transdução de Sinal , Administração Oral , Adulto , Ecossistema , Feminino , Humanos , Concentração de Íons de Hidrogênio , Fatores Imunológicos , Lactobacillus/genética , Pessoa de Meia-Idade , Gravidez , Probióticos/administração & dosagem
12.
Front Cell Infect Microbiol ; 10: 586667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330129

RESUMO

Human milk contains a dynamic and complex site-specific microbiome, which is not assembled in an aleatory way, formed by organized microbial consortia and networks. Presence of some genera, such as Staphylococcus, Streptococcus, Corynebacterium, Cutibacterium (formerly known as Propionibacterium), Lactobacillus, Lactococcus and Bifidobacterium, has been detected by both culture-dependent and culture-independent approaches. DNA from some gut-associated strict anaerobes has also been repeatedly found and some studies have revealed the presence of cells and/or nucleic acids from viruses, archaea, fungi and protozoa in human milk. Colostrum and milk microbes are transmitted to the infant and, therefore, they are among the first colonizers of the human gut. Still, the significance of human milk microbes in infant gut colonization remains an open question. Clinical studies trying to elucidate the question are confounded by the profound impact of non-microbial human milk components to intestinal microecology. Modifications in the microbiota of human milk may have biological consequences for infant colonization, metabolism, immune and neuroendocrine development, and for mammary health. However, the factors driving differences in the composition of the human milk microbiome remain poorly known. In addition to colostrum and milk, breast tissue in lactating and non-lactating women may also contain a microbiota, with implications in the pathogenesis of breast cancer and in some of the adverse outcomes associated with breast implants. This and other open issues, such as the origin of the human milk microbiome, and the current limitations and future prospects are addressed in this review.


Assuntos
Lactação , Microbiota , Archaea , Bifidobacterium , Feminino , Humanos , Lactente , Leite Humano
13.
Int J Food Microbiol ; 334: 108804, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32818764

RESUMO

Listeria monocytogenes can form long-lasting biofilms on food-contact surfaces. Lactic acid bacteria (LAB) have shown promise in antagonizing this microorganism in liquid media. However, the ecological relationships differ when cells are forming biofilms. In this work, we propose the use of Lactobacillus biofilms as surface "conditioners" to modulate the adhesion of L. monocytogenes. For this, the biofilm formation ability of Lactobacillus fermentum MP26 and Lactobacillus salivarius MP14 (human milk origin), fluorescently labeled by transfer of the mCherry-encoding pRCR12 plasmid, was first evaluated. Then, mature biofilms of these strains transformed with pRCR12 for expressing the fluorescent protein mCherry were used as adhesion substrate for GFP-tagged L. monocytogenes Scott A. The resulting biofilms were studied in terms of cellular population and attached biomass (cells plus matrix). Species distribution inside the biofilm structure was revealed by confocal laser scanning microscopy (CLSM). Although none of the Lactobacillus spp. strains reduced the adhesion of L. monocytogenes Scott A, species interactions seem to interfere with the synthesis of extracellular polymeric substances and species distribution inside the biofilms. In dual-species biofilms, CLSM images revealed that Lactobacillus cells were trapping those of L. monocytogenes Scott A. When surfaces were conditioned with Lactobacillus biofilms, the spatial distribution of L. monocytogenes Scott A cells was species-specific, suggesting these interactions are governing the ultimate biofilm structure. The results here obtained open new possibilities for controlling L. monocytogenes dispersal using these Lactobacillus spp. biofilms as a "natural" immobilization way. Whether species interactions could modify the virulence of L. monocytogenes still remains unclear.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes , Vidro/química , Lactobacillus/fisiologia , Listeria monocytogenes/fisiologia , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Humanos , Interações Microbianas
14.
Microorganisms ; 8(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825795

RESUMO

Human milk microbiota is a unique bacterial community playing a relevant role in infant health, but its composition depends on different factors (woman health, lactation stage, and geographical lactation). However, information is lacking regarding some other factors that may affect the bacterial community of human milk. In this study we aimed to study the impact of the sample collection method and the skimming procedure using culture-dependent and culture-independent techniques to study the human milk microbial profile. One set of milk samples was provided by women (n = 10) in two consecutive days; half of the samples were collected the first day by manual expression and the other half on the second day by pumping. The rest of the participants (n = 17) provided milk samples that were fractionated by centrifugation; the bacterial profiles of whole milk and skimmed milk were compared by culture techniques in 10 milk samples, while those of whole milk, fat and skimmed milk were subjected to metataxonomic analysis in seven samples. Globally, the results obtained revealed high interindividual variability but that neither the use of single-use sterile devices to collect the sample nor the skimming procedure have a significant impact of the microbial profile of human samples.

15.
PLoS One ; 15(5): e0233554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437424

RESUMO

BACKGROUND: Many biologically active factors are present in human milk including proteins, lipids, immune factors, and hormones. The milk composition varies over time and shows large inter-individual variability. This study examined variations of human milk immune factors and cortisol concentrations in the first three months post-partum, and their potential associations with maternal psychosocial distress. METHODS: Seventy-seven healthy mothers with full term pregnancies were enrolled, of which 51 mothers collected morning milk samples at 2, 6 and 12 weeks post-delivery. Maternal psychosocial distress was assessed at 6 weeks post-delivery using questionnaires for stress, anxiety, and depressive symptoms. Immune factors were determined using multiplex immunoassays and included innate immunity factors (IL1ß, IL6, IL12, IFNγ, TNFα), acquired immunity factors (IL2, IL4, IL10, IL13, IL17), chemokines (IL8, Groα, MCP1, MIP1ß), growth factors (IL5, IL7, GCSF, GMCSF, TGFß2) and immunoglobulins (IgA, total IgG, IgM). Cortisol was quantified using liquid chromatography-tandem mass spectrometry. A linear mixed effects model was fit to test whether stress, anxiety, and depressive symptoms individually predicted human milk cortisol concentrations after accounting for covariates. Repeated measurement analyses were used to compare women with high (n = 13) versus low psychosocial distress (n = 13) for immune factors and cortisol concentrations. RESULTS: Virtually all immune factors and cortisol, with the exception of the granulocyte-macrophage colony-stimulating factor (GMCSF), were detected in the human milk samples. The concentrations of the immune factors decreased during the first 3 months, while cortisol concentrations increased over time. No correlation was observed between any of the immune factors and cortisol. No consistent relationship between postnatal psychosocial distress and concentrations of immune factors was found, whereas higher psychosocial distress was predictive of higher cortisol concentrations in human milk. CONCLUSION: In the current study we found no evidence for an association between natural variations in maternal distress and immune factor concentrations in milk. It is uncertain if this lack of association would also be observed in studies with larger populations, with less uniform demographic characteristics, or with women with higher (clinical) levels of anxiety, stress and/or depressive symptoms. In contrast, maternal psychosocial distress was positively related to higher milk cortisol concentrations at week 2 post-delivery. Further investigation on maternal psychosocial distress in relation to human milk composition is warranted.


Assuntos
Citocinas/análise , Hidrocortisona/análise , Leite Humano/química , Estresse Psicológico/diagnóstico , Adulto , Ansiedade/diagnóstico , Depressão/diagnóstico , Feminino , Humanos , Fatores Imunológicos/análise , Mães/psicologia
16.
Nutrients ; 12(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32121004

RESUMO

The objective of this pilot study was to assess the fecal microbiome and different immunological parameters in infant feces and maternal milk from mother-infant pairs in which the infants were suffering from different gastrointestinal disorders (colic, non-IgE-mediated cow milk protein allergy (CMPA), and proctocolitis). A cohort of 30 mother-infant pairs, in which the infants were diagnosed with these gastrointestinal disorders or included as healthy controls, were recruited. Bacterial composition of infant feces and breast milk was determined by metataxonomic sequencing. Immunological compounds were quantified using multiplexed immunoassays. A higher abundance of Eggerthellaceae, Lachnospiraceae and Peptostreptococcaceae, and lower abundance of Bifidobacterium and higher abundance of Rothia were registered in fecal samples from the CMPA group. Eggerthellaceae was also significantly more abundant in milk samples of the CMPA group. There were no differences in the concentration of immunological compounds in infant fecal samples between the four groups. In contrast, differences were found in the concentration and/or frequency of compounds related to acquired immunity and granulocyte colony stimulating factor (GCSF) in breast milk samples. In conclusion, a few microbial signatures in feces may explain part of the difference between CMPA and other infants. In addition, some milk immunological signatures have been uncovered among the different conditions addressed in this pilot study.


Assuntos
Bactérias , Fezes/microbiologia , Gastroenteropatias , Microbioma Gastrointestinal , Leite Humano , Adulto , Biomarcadores/metabolismo , Feminino , Gastroenteropatias/imunologia , Gastroenteropatias/metabolismo , Gastroenteropatias/microbiologia , Humanos , Lactente , Recém-Nascido , Masculino , Projetos Piloto
17.
Artigo em Inglês | MEDLINE | ID: mdl-32172230

RESUMO

At the beginning of the 21st century, some pioneer studies provided evidence of the existence of a site-specific human milk microbiota. Hygienically collected milk samples from healthy women contain a relatively low bacterial load, which consist mostly of Staphylococcus, Streptococcus, lactic acid bacteria, and other gram-positive bacteria (Corynebacterium, Propionibacterium, and Bifidobacterium). DNA from strict anaerobic bacteria is also detected in human milk samples. The origin of human milk bacteria still remains largely unknown. Although the infant's oral cavity and maternal skin may provide microbes to milk, selected bacteria of the maternal digestive microbiota may access the mammary glands through oral- and enteromammary pathways involving interactions with immune cells. In addition, when milk is collected using external devices, such as breast pumps, some microorganisms may arise from unhygienic handling as well as from the water used to clean and rinse the devices, for example. The human milk microbiota has a wide spectrum of potential uses. Most of them have been focused on the infant (including the preterm ones), but some bacterial strains present in human milk have also a big potential to be used to improve the mother's health, mainly through the prevention or treatment of infectious mastitis during lactation.


Assuntos
Microbiota , Leite Humano , Aleitamento Materno , Feminino , Humanos , Lactação , Leite Humano/microbiologia , Boca
18.
Front Microbiol ; 10: 2333, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695687

RESUMO

Human milk contains many bioactive components, including bacteria, which are transferred to the developing infant through breastfeeding. Milk bacteria appear to, amongst others, originate from the maternal gut. A mother's postnatal psychosocial distress may alter maternal gut microbiota, which in turn may affect the bacteria present in milk. The aim of this study was to explore whether maternal postnatal psychosocial distress was related to alterations in the relative abundances of specific bacteria and to milk microbial diversity. Healthy mothers (N = 77; N = 51 with complete data) collected breast milk samples at 2, 6, and 12 weeks postpartum and filled in mood questionnaires on experienced stress, anxiety, and depressive symptoms at 6 weeks postpartum. A metataxonomic approach (16S rRNA gene sequencing (region V3 and V4) using Illumina MiSeq technology) was used to assess bacterial abundances and diversity. For the group as a whole, an increase in diversity of the milk bacterial community was observed during the first 3 months of breastfeeding (Shannon index). This general increase in diversity appears to be explained by an increase of Lactobacillus and other minor genera, together with a decrease in Staphylococcus. With respect to psychological distress and milk microbial composition, no significant differences in the relative abundance of major bacterial genera were detected between women with high (N = 13) and low (N = 13) psychosocial distress. However, progressive and distinct changes in the content of Firmicutes, Proteobacteria, and Bacteroidetes at the phylum level and Acinetobacter, Flavobacterium, and Lactobacillus at the genera level were observed in milk samples of women with low psychosocial distress. With respect to milk microbial diversity, high maternal psychosocial distress, compared to low maternal psychosocial distress, was related to significantly lower bacterial diversity in milk at 3 months post-delivery. Anxiety, stress, and depressive symptoms separately were unrelated to specific bacterial profiles. The current study suggests a potential relation between maternal psychosocial distress and milk microbiota, providing first evidence of a possible mechanism through which post-partum psychological symptoms may affect infant development and health.

19.
J Dairy Sci ; 102(10): 9298-9311, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421883

RESUMO

Mastitis is a highly prevalent condition that has a great impact on milk production and animal welfare, and often requires substantial management efforts. For this reason, it is generally considered an important threat to the dairy industry. Many microbial, host, and environmental factors can protect against, predispose to, or influence the development of mastitis. The objective of this work was to characterize the milk microbiota of Manchega ewes, and to compare samples from animals with and without a history of mastitis. We analyzed milk samples from 36 ewes belonging to 2 different farms (18 ewes from each farm) using culture-dependent and culture-independent techniques. We also analyzed several immune compounds to investigate associations of mastitis with 3 main variables: farm; history of mastitis or no mastitis; and parity number. Both culture-dependent and culture-independent techniques showed that ewe milk harbored a site-specific complex microbiota and microbiome. Staphylococcus epidermidis was the main species driving the difference between farm A (where it was the dominant species) and B (where it was not). In contrast, samples from farm B were characterized by the presence of a wide spectrum of other coagulase-negative staphylococci. Some of these species have already been associated with subclinical intramammary infections in ruminants. Of the 10 immune compounds assayed in this study, 3 were related to a history of mastitis [IL-8, IFN-γ, and IFN-gamma-induced protein 10 (IP-10)]. Increases in IL-8 concentrations in milk seemed to be a feature of subclinical mastitis in sheep, and in this study, this immune factor was detected only in samples from ewes with some episodes of mastitis and from the group with the highest somatic cell count. We also observed a positive correlation between the samples with the highest somatic cell count and IFN-γ and IP-10 levels. Our results suggest that these 3 compounds could be used as biomarkers for the negative selection of mastitis-prone animals, particularly when somatic cell count is very high.


Assuntos
Mastite/veterinária , Microbiota , Leite/microbiologia , Doenças dos Ovinos/microbiologia , Staphylococcus epidermidis , Animais , Contagem de Células/veterinária , Feminino , Leite/metabolismo , Paridade , Gravidez , Prevalência , Ovinos , Doenças dos Ovinos/imunologia , Staphylococcus/isolamento & purificação , Staphylococcus epidermidis/isolamento & purificação
20.
Front Microbiol ; 10: 1117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178838

RESUMO

The aim of the present study was to evaluate the probiotic potential of Lactobacillus rhamnosus MP01 and Lactobacillus plantarum MP02, two strains isolated from canine milk. These two isolates were characterized in vitro for their survival to conditions similar to those found in the canine gastrointestinal tract, production of antimicrobial compounds, adherence to intestinal mucin, degradation of mucin, and antibiotic sensitivity. Globally, both strains exhibited a high in vitro probiotic potential. Finally, their potential for the prevention of gastrointestinal infections was evaluated in an experimental canine model using 1-month-old puppies. A group of 12 German shepherd puppies, 6 males and 6 females, received L. rhamnosus MP01 daily for 2 months and a second group of 12 puppies, 6 males and 6 females, of the same breed received L. plantarum MP02 during the same period of time. The same experimental approach was carried with Yorkshire puppies. Additionally, the trial included 12 dogs of each breed in the placebo groups. The results demonstrated that administration of the strains resulted in a significant preventive effect of gastrointestinal infections in such populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...