Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 700-716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382573

RESUMO

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Assuntos
Clima , Orchidaceae , Austrália , Filogenia , Filogeografia , Orchidaceae/genética
2.
AIMS Microbiol ; 9(2): 277-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091816

RESUMO

Concrete is now a prevalent type of synthetic rock, and its production and usage have major environmental implications. Yet, assessments of ordinary concrete have rarely considered that concrete itself is potential habitat for a globally important microbial guild, the endolithic microbes, which live inside rocks and other mineralized substrates. We sought evidence that many common concrete structures harbor endolithic microbial communities and that these communities vary widely depending on the conditions imposed by the concrete. In Summer 2022, we obtained samples from various concrete structures found throughout Lubbock, Texas, USA and subjected the internal (non-surface) portions of each sample to controlled microbial life detection tests including culture tests, DNA quantifications, DNA amplification tests, and ATP assays. The great preponderance of positive life detection results from our concrete samples suggests that most modern concrete hosts cryptic endolith communities composed of bacteria, sometimes co-occurring with fungi and/or archaea. Moreover, many of these microbes are viable, culturable, and identifiable via genetic analysis. Endolith signatures varied widely across concrete samples; some samples only yielded trace evidence of possibly dormant microbes while other samples contained much more microbial biomass and diversity, on par with some low-biomass soils. Pre-cast masonry units and fragments of poured concrete found underwater generally had the most endolith signatures, suggesting that concrete forms and environmental positioning affect endolithy. Endolith biosignatures were generally greater in less dense and less alkaline concrete samples. So, concrete endolith communities may be as ubiquitous and diverse as the concrete structures they inhabit. We propose further research of concrete endoliths to help clarify the role of modern concrete in our rapidly urbanizing biosphere.

3.
Mycorrhiza ; 33(1-2): 87-105, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651985

RESUMO

Mycorrhizal symbiosis has been related to the coexistence and community assembly of coexisting orchids in few studies despite their obligate dependence on mycorrhizal partners to establish and survive. In hyper-diverse environments like tropical rain forests, coexistence of epiphytic orchids may be facilitated through mycorrhizal fungal specialization (i.e., sets of unique and dominant mycorrhizal fungi associated with a particular host species). However, information on the role of orchid mycorrhizal fungi (OMF) in niche differentiation and coexistence of epiphytic orchids is still scarce. In this study, we sought to identify the variation in fungal preferences of four co-occurring epiphytic orchids in a tropical rainforest in Costa Rica by addressing the identity and composition of their endophytic fungal and OMF communities across species and life stages. We show that the endophytic fungal communities are formed mainly of previously recognized OMF taxa, and that the four coexisting orchid species have both a set of shared mycorrhizal fungi and a group of fungi unique to an orchid species. We also found that adult plants keep the OMF of the juvenile stage while adding new mycobionts over time. This study provides evidence for the utilization of specific OMF that may be involved in niche segregation, and for an aggregation mechanism where adult orchids keep initial fungal mycobionts of the juvenile stage while adding others.


Assuntos
Micorrizas , Orchidaceae , Orchidaceae/microbiologia , Simbiose , Filogenia
4.
Sci Rep ; 9(1): 15098, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641165

RESUMO

Taxonomic delimitations are challenging because of the convergent and variable nature of phenotypic traits. This is evident in species-rich lineages, where the ancestral and derived states and their gains and losses are difficult to assess. Phylogenetic comparative methods help to evaluate the convergent evolution of a given morphological character, thus enabling the discovery of traits useful for classifications. In this study, we investigate the evolution of selected traits to test for their suitability for generic delimitations in the clade Lepanthes, one of the Neotropical species-richest groups. We evaluated every generic name proposed in the Lepanthes clade producing densely sampled phylogenies with Maximum Parsimony, Maximum Likelihood, and Bayesian approaches. Using Ancestral State Reconstructions, we then assessed 18 phenotypic characters that have been traditionally employed to diagnose genera. We propose the recognition of 14 genera based on solid morphological delimitations. Among the characters assessed, we identified 16 plesiomorphies, 12 homoplastic characters, and seven synapomorphies, the latter of which are reproductive features mostly related to the pollination by pseudocopulation and possibly correlated with rapid diversifications in Lepanthes. Furthermore, the ancestral states of some reproductive characters suggest that these traits are associated with pollination mechanisms alike promoting homoplasy. Our methodological approach enables the discovery of useful traits for generic delimitations in the Lepanthes clade and offers various other testable hypotheses on trait evolution for future research on Pleurothallidinae orchids because the phenotypic variation of some characters evaluated here also occurs in other diverse genera.


Assuntos
Orchidaceae/genética , Filogenia , Característica Quantitativa Herdável , Orchidaceae/classificação , Melhoramento Vegetal/métodos , Polinização/genética , Polimorfismo Genético , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...