Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36840149

RESUMO

Globally, cadmium (Cd) is one of the metals that causes the most significant problems of contamination in agricultural soils and toxicity in living organisms. In this study, the ability of three different nanoparticles (dose 3% w/w) (hydroxyapatite (HANPs), maghemite (MNPs), or zero-valent iron (FeNPs)) to decrease the availability of Cd in artificially contaminated agricultural soil was investigated. The effect of Cd and nanoparticles on germination and early growth of Sinapis alba L. was also assessed by tolerance/toxicity bioassays. The available Cd contents in the contaminated soil decreased after treatment with the nanoparticles (available Cd decreased with HANPs: >96.9%, MNPs: >91.9%, FeNPs: >94%), indicating that these nanoparticles are highly efficient for the fixation of available Cd. The toxicity/tolerance bioassays showed different behavior for each nanoparticle. The HANPs negatively affected germination (G(%): 20% worsening compared to control soil), early root growth (Gindex: -27.7% compared to control soil), and aerial parts (Apindex: -12%) of S. alba, but showed positive effects compared to Cd-contaminated soils (Gindex: +8-11%; Apindex: +26-47%). MNP treatment in Cd-contaminated soils had a positive effect on germination (G(%): 6-10% improvement) and early growth of roots (Gindex: +16%) and aerial parts (Apindex: +16-19%). The FeNPs had a positive influence on germination (G(%): +10%) and growth of aerial parts (Apindex: +12-16%) but not on early growth of roots (Gindex: 0%). These nanoparticles can be used to reduce highly available Cd contents in contaminated soils, but MNPs and FeNPs showed the most favorable effects on the early growth and germination of S. alba.

2.
Environ Pollut ; 322: 121161, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720341

RESUMO

Reducing the toxicity caused by antibiotics on bacterial communities in the soil is one of the great challenges of this century. For this, the effectiveness of amending the soil with different bioadsorbents such as crushed mussel shell (CMS), pine bark (PB) and biomass ash (BA), as well as combinations of them (CMS + PB and PB + BA) was studied at different doses (0 g kg-1 to 48 g kg-1). Soil samples were spiked, separately, with increasing doses (0-2000 mg kg-1) of cefuroxime (CMX), amoxicillin (AMX), clarithromycin (CLA), azithromycin (AZI), ciprofloxacin (CIP) and trimethoprim (TMP). Their toxicity on bacterial growth was estimated using the tritium-labeled leucine (3H) incorporation method. Toxicity was observed to behave differently depending on the antibiotic family and bioadsorbent, although in different magnitude and at different doses. The toxicity of ß-lactams (AMX and CXM) was reduced by up to 54% when the highest doses of bio-adsorbents were added due to the increase in pH (CMS and BA) and carbon (PB) contribution. Macrolides (CLA and AZI) showed slight toxicity in un-amended soil samples, which increased by up to 65% with the addition of the bio-adsorbents. The toxicity of CIP (a fluoroquinolone) increased with the dose of the bio-adsorbents, reaching up to 20% compared with the control. Finally, the toxicity of TMP (a diaminopyrimidine) slightly increased with the dose of bio-adsorbents. The by-products that increase soil pH are those that showed the highest increases of CLA, AZI, CIP and TMP toxicities. These results could help to prevent/reduce environmental pollution caused by different kinds of antibiotics, selecting the most appropriated bio-adsorbents and doses.


Assuntos
Antibacterianos , Poluentes do Solo , Antibacterianos/toxicidade , Solo , Azitromicina , Ciprofloxacina , Biomassa , Trimetoprima , Claritromicina , Amoxicilina , Poluentes do Solo/análise
3.
J Environ Manage ; 325(Pt B): 116494, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308956

RESUMO

Heavy metals from anthropogenic sources accumulate slowly but steadily, leading to high metal concentration levels in soil. However, the effect of each heavy metal on soil bacterial communities is usually assessed in laboratories by a single application of individually spiked metals. We evaluated the differences between single individual application and repeated individual applications of Cr, Cu, Ni, Pb, and Zn on bacterial communities, through pollution-induced community tolerance (PICT), using bacterial growth as the endpoint (3H-leucine incorporation method). We found that PICT development was higher when soil was spiked in individual single application than individual repeated applications for Cu, Ni and Zn. In contrast, bacterial communities did not show different tolerance between singly or repeatedly when soil was spiked with Cr. In the case of Pb any increase of bacterial community tolerance to this metal was found despite high doses applied (up to 2000 mg kg-1). These results are relevant for the interpretation of the effects of heavy metals on soil microbes in order to avoid laboratory overestimations of the real effects of heavy metals on soil microbes.


Assuntos
Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Chumbo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Solo , Bactérias , China , Medição de Risco
4.
Environ Res ; 214(Pt 4): 114071, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995223

RESUMO

In this research, the adsorption/desorption of the antibiotics doxycycline (DC), enrofloxacin (ENR), and sulfamethoxypyradazine (SMP) was studied in 6 agricultural soils with predominance of variable charge, both before and after removing organic matter by calcination. DC adsorption was high at acidic pH, and decreased at pH values above 8. Removal of organic matter with calcination caused just a slight decrease in adsorption, and even in some soils adsorption was similar to that in non-calcined samples. The adsorption coefficients (Kd) were higher for the DC- species compared to DC+, DC0 and DC2-. Regarding DC desorption, the values were very low throughout the pH range covered in the study (2-12), both in the calcined samples and in those not subjected to calcination. ENR showed a similar behavior to DC regarding the effect of pH, since ENR adsorption also decreased at basic pH, but the effect of removing organic matter was different, as it caused a clear decrease in ENR adsorption. The species with the highest Kd was in this case ENR0, although ENR+ is also quantitatively important as regards Kd value in calcined samples. For this antibiotic, no differences in desorption were observed between calcined and non-calcined samples. Finally, SMP adsorption also decreased as pH increased, and, in addition, similarly to what happened with ENR, in general, there was a strong decrease in SMP adsorption when organic matter was removed. The species with the highest Kd in this case was SMP+ in non-calcined samples, but SMP0 and SMP- become more relevant in calcined samples. The percentages of SMP desorption were higher than those for the other two antibiotics, and an increase occurs at intermediate pH values, being higher for calcined samples. These results can be considered relevant in terms of increasing the knowledge as regards the possible evolution and fate of the three antibiotics studied. Specifically, for different pH conditions and with different organic matter contents, when they reach soils and other environmental compartments after being discharged as contaminants. This could have important repercussions on public health and the overall environment.


Assuntos
Poluentes do Solo , Sulfametoxipiridazina , Adsorção , Antibacterianos , Doxiciclina , Enrofloxacina , Concentração de Íons de Hidrogênio , Solo/química , Poluentes do Solo/análise
5.
Environ Res ; 214(Pt 2): 113920, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35921908

RESUMO

Pollution-Induced Community Tolerance (PICT) is a helpful and sensitive methodology to evaluate the effect of metal pollution in soils using microorganisms as indicators. PICT was used to determine the increase of bacterial community tolerance to Cu, Ni, Pb and Zn (Δlog IC50), and to assess the influence of soil properties on the development of bacterial community tolerance to Cu, Ni, Pb, and Zn. Soil samples showed a wide range of properties, such as pH (3.96-7.47), texture (13.8-31.7% clay) or organic matter (9.7-30.7%). Bacterial growth measured by the [3H]-leucine incorporation method was used as the PICT endpoint. Bacterial communities generally developed tolerance in response to Cu, Ni and Zn additions to soils. However, bacterial communities showed no tolerance to Pb, probably due to high Pb sorption in studied soils. Soil properties influenced the development of bacterial community tolerance to Cu, Ni and Zn. Effective cation exchange and a soil sorption parameter (Freundlich's linearity index) were the selected variables to estimate Δlog IC50 to Cu (R2 = 0.65). Clay content and Ni-soluble are the main factors to estimate Δlog IC50 to Ni (R2 = 0.63). Organic matter content and a sorption parameter (maximum sorption capacity of the soil from Langmuir equation) are the soil properties to estimate Δlog IC50 to Zn (R2 = 0.45). Most of the variables exerted their effect in soil, i.e. PICT selection phase. However, clay content affected bacterial community tolerance determination (PICT detection phase), leading to overestimated measurements of bacterial community tolerance.


Assuntos
Metais Pesados , Poluentes do Solo , Bactérias , Argila , Monitoramento Ambiental , Chumbo/toxicidade , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zinco/análise , Zinco/toxicidade
6.
Environ Res ; 214(Pt 2): 113916, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35872321

RESUMO

The presence of emerging pollutants, and specifically antibiotics, in agricultural soils has increased notably in recent decades, causing growing concern as regards potential environmental and health issues. With this in mind, the current study focuses on evaluating the toxicity exerted by three antibiotics (amoxicillin, trimethoprim, and ciprofloxacin) on the growth of soil bacterial communities, when these pollutants are present at different doses, and considered in the short, medium, and long terms (1, 8 and 42 days of incubation). Specifically, the research was carried out in 12 agricultural soils having different physicochemical characteristics and was performed by means of the leucine (3H) incorporation method. In addition, changes in the structure of soil microbial communities at 8 and 42 days were studied in four of these soils, using the phospholipids of fatty acids method for this. The main results indicate that the most toxic antibiotic was amoxicillin, followed by trimethoprim and ciprofloxacin. The results also show that the toxicity of amoxicillin decreases with time, with values of Log IC50 ranging from 0.07 ± 0.05 to 3.43 ± 0.08 for day 1, from 0.95 ± 0.07 to 3.97 ± 0.15 for day 8, and from 2.05 ± 0.03 to 3.18 ± 0.04 for day 42, during the incubation period. Regarding trimethoprim, 3 different behaviors were observed: for some soils the growth of soil bacterial communities was not affected, for a second group of soils trimethoprim toxicity showed dose-response effects that remained persistent over time, and, finally, for a third group of soils the toxicity of trimethoprim increased over time, being greater for longer incubation times (42 days). As regards ciprofloxacin, this antibiotic did not show a toxicity effect on the growth of soil bacterial communities for any of the soils or incubation times studied. Furthermore, the principal component analysis performed with the phospholipids of fatty acids results demonstrated that the microbial community structure of these agricultural soils, which persisted after 42 days of incubation, depended mainly on soil characteristics and, to a lesser extent, on the dose and type of antibiotic (amoxicillin, trimethoprim or ciprofloxacin). In addition, it was found that, in this research, the application of the three antibiotics to soils usually favored the presence of fungi and Gram-positive bacteria.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Amoxicilina/análise , Amoxicilina/metabolismo , Amoxicilina/toxicidade , Antibacterianos/toxicidade , Bactérias , Ciprofloxacina/metabolismo , Ciprofloxacina/toxicidade , Poluentes Ambientais/análise , Ácidos Graxos/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Trimetoprima/análise , Trimetoprima/metabolismo , Trimetoprima/toxicidade
7.
Chemosphere ; 291(Pt 1): 132758, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34736938

RESUMO

The presence of antibiotics in soils may increase the selection pressure on soil bacterial communities and cause tolerance to these pollutants. The temporal evolution of bacterial community tolerance to different concentrations of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) was evaluated in two soils. The results showed an increase of soil bacterial community tolerance to TC, CTC and OTC only in samples polluted with the highest antibiotic concentrations tested (2000 mg kg-1). The magnitude of those increases was higher in the soil with the lower organic carbon content (1.6%) than in the soil with an organic carbon content reaching 3.4%. In the soil with low organic carbon content, the time-course evolution showed a maximum increase in the tolerance of bacterial communities to tetracycline antibiotics between 45 and 100 incubation days, while for longer incubation times (360 days) the tolerance decreased. In the soil with high organic carbon content, a similar behavior was found for OTC. However, for CTC and TC, slightly increases and decreases (respectively) were found in the bacterial community tolerance at intermediate incubation times, followed by values close to zero for TC after 360 days of incubation, while for CTC they remained higher than in the control. In conclusion, soil pollution due to tetracyclines may cause bacterial community tolerance to these antibiotics when present at high concentrations. In addition, the risk is higher in soils with low organic matter content, and it decreases with time.


Assuntos
Clortetraciclina , Oxitetraciclina , Poluentes do Solo , Antibacterianos/toxicidade , Clortetraciclina/análise , Laboratórios , Oxitetraciclina/análise , Oxitetraciclina/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Tetraciclina/análise , Tetraciclina/toxicidade , Tetraciclinas/análise
8.
Molecules ; 26(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064068

RESUMO

In view of the rising relevance of emerging pollutants in the environment, this work studies the photodegradation of three antibiotics, evaluating the effects of the pH of the medium and the concentration of dissolved organic matter. Simulated light (with a spectrum similar to that of natural sunlight) was applied to the antibiotics Ciprofloxacin (Cip), Clarithromycin (Cla) and Trimethoprim (Tri), at three different pH, and in the presence of different concentrations of humic acids. The sensitivity to light followed the sequence: Cip > Cla > Tri, which was inverse for the half-life (Tri > Cla > Cip). As the pH increased, the half-life generally decreased, except for Cla. Regarding the kinetic constant k, in the case of Cip and Tri it increased with the rise of pH, while decreased for Cla. The results corresponding to total organic carbon (TOC) indicate that the complete mineralization of the antibiotics was not achieved. The effect of humic acids was not marked, slightly increasing the degradation of Cip, and slightly decreasing it for Tri, while no effect was detected for Cla. These results may be relevant in terms of understanding the evolution of these antibiotics, especially when they reach different environmental compartments and receive sunlight radiation.


Assuntos
Antibacterianos/efeitos da radiação , Ciprofloxacina/efeitos da radiação , Claritromicina/efeitos da radiação , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Luz , Trimetoprima/efeitos da radiação , Antibacterianos/química , Ciprofloxacina/química , Claritromicina/química , Escuridão , Meia-Vida , Cinética , Trimetoprima/química
9.
Environ Res ; 197: 111049, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753078

RESUMO

In the context of the current COVID-19 pandemic, and mostly taking a broad perspective, it is clearly relevant to study environmental factors that could affect eventual future outbreaks due to coronaviruses and/or other pathogenic microorganisms. In view of that, the authors of this manuscript review the situation of SARS-CoV-2 and other main pathogenic microorganisms in the environment, focusing on Galicia and Spain. Overall, in addition to showing local data, it is put in evidence that, summed to all efforts being carried out to treat/control this and any other eventual future epidemic diseases, both at local and global levels, a deep attention should be paid to ecological/environmental aspects that have effects on the planet, its ecosystems and their relations/associations with the probability of spreading of eventual future pandemics.


Assuntos
COVID-19 , Pandemias , Ecossistema , Humanos , SARS-CoV-2 , Espanha/epidemiologia
10.
J Hazard Mater ; 409: 124960, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33422757

RESUMO

The effect of Cu on three different microbial endpoints was studied using different Cu sources, in order to check the usefulness of pure Cu salts to estimate the toxicity of commercial Cu fungicides on soil microbes. Cu additions caused similar dose-response curves of substrate induced respiration (SIR) decreases regardless of Cu source, i.e. the use of pure Cu salts to estimate the effect of Cu fungicides on microbial biomass using SIR may be useful. Phospholipid fatty acid (PLFA) analysis showed that the Cu source was more important for the microbial community structure than Cu concentration. Thus, the use of Cu salts to infer the effects of Cu fungicides on microbial community structure using PLFA analysis is not recommended, since effects of Cu concentration will be confounded with Cu source. Analyzing pollution induced community tolerance (PICT) to Cu showed that the use of pure Cu salts may overestimate Cu effects if Cu salt additions modified the soil pH. The highest doses of Cu salts increased bacterial community tolerance to Cu between 300 and 600 times, while commercial Cu fungicide increases were between 20 and 160 times. Therefore, the use of pure Cu salts to estimate the Cu fungicides effects on soil microbes is not recommended for PLFAs analyses, not suitable for PICT at high Cu concentrations, while useful for SIR.


Assuntos
Fungicidas Industriais , Microbiota , Poluentes do Solo , Biomassa , Ácidos Graxos , Fungicidas Industriais/toxicidade , Sais , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
Environ Res ; 193: 110404, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33129858

RESUMO

The increase of concentrations of tetracycline antibiotics in agricultural soils worldwide is of special concern, due to its potential toxic effects on soil bacterial communities. In the present work, the reuse of two waste/by-product materials as soil amendments was tested as a preventive practice for reducing tetracycline antibiotics toxicity in soils. Pine bark (PB), with high percentage of organic carbon, and crushed mussel shell (CMS), a frequent natural liming material, were added to 4 soils in doses 0, 6, 12 and 48 g of by-product per kg-1 of soil (dry weight) of each one (separately). The soils and soil-waste mixtures were then spiked with tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC). After one day of incubation, the bacterial growth was estimated in soils and soil-mixtures using the leucine incorporation technique. The addition of PB to the soils showed two different behaviors, depending on the antibiotics. The toxicity of TC and OTC decreased with the addition of PB (toxicities going from 6 to 25% and from 5 to 36%, respectively). However, CTC toxicity did not change, or even increased in response to the PB amendment. Regarding soil amendment with CMS, it was not effective to prevent the toxicity of any of the three antibiotics studied.


Assuntos
Clortetraciclina , Poluentes do Solo , Adsorção , Animais , Antibacterianos/toxicidade , Clortetraciclina/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-33255954

RESUMO

The toxicity exerted by the antibiotic sulfadiazine on the growth of soil bacterial communities was studied in two agricultural soils for a period of 100 days. In the short-term (2 days of incubation), the effect of sulfadiazine on bacterial growth was low (no inhibition or inhibition <32% for a dose of 2000 mg·kg-1). However, sulfadiazine toxicity increased with time, achieving values of 40% inhibition, affecting bacterial growth in both soils after 100 days of incubation. These results, which were here observed for the first time for any antibiotic in soil samples, suggest that long-term experiments would be required for performing an adequate antibiotics risk assessment, as short-term experiments may underestimate toxicity effects.


Assuntos
Poluentes do Solo , Sulfadiazina , Antibacterianos/toxicidade , Bactérias , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Sulfadiazina/toxicidade
13.
Environ Res ; 190: 110003, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32750326

RESUMO

Batch-type experiments were used to study competitive adsorption/desorption for the antibiotics tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), onto by-products from forest and food industries (oak ash, pine bark, and mussel shell). These antibiotics are frequently present in manures and slurries spread on agrosystems. Binary competitive systems were performed by setting the dose of one antibiotic to 200 µmol L-1, and varying the concentration of a second antibiotic from 50 to 600 µmol L-1. In the cases where a concentration of 200 µmol L-1 was used for each antibiotic, the results of the binary experiments were also compared with those obtained in parallel tests corresponding to simple and ternary systems using the same concentration. The results indicated that pine bark can adsorb most of the antibiotics added, with desorption being less than 5% in most cases. Oak ash showed high adsorption for all three antibiotics in the simple systems (100% of CTC, 90% of TC, and 80% of OTC), but clearly decreased in the binary systems (up to values below 40%), especially for higher antibiotics concentrations, although desorption was generally less than 5%. Mussel shell showed adsorption results lesser than 25% for OTC and CT in simple systems, while increased up to 65% in binary systems in which CTC was present at high concentrations, but desorption was generally very high. CTC was the antibiotic with the highest adsorption onto all three by-products, and the one showing less decrease for its adsorption in the binary systems. Overall, the smallest differences among the various competitive systems were obtained when the adsorbent used was pine bark, and especially for the CTC antibiotic. These results could aid to develop management practices, based on the use of low-cost bio-sorbents, which would decrease risks of pollution due to tetracycline antibiotics spread in agroecosystems and affecting the environment.


Assuntos
Clortetraciclina , Poluentes do Solo , Adsorção , Animais , Antibacterianos , Clortetraciclina/análise , Solo , Poluentes do Solo/análise
14.
Environ Pollut ; 257: 113585, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31753627

RESUMO

Microbial responses to Cu pollution as a function of Cu sources (Cu salts and commercial Cu fungicides) were assessed in a soil using basal soil respiration, and bacterial and fungal community growth, as endpoints. The soil was amended with different concentrations (0-32 mmol Cu kg-1) of Cu nitrate, Cu sulfate, Bordeaux mixture and 3 types of Cu oxychloride. Cu salts decreased soil pH, while this was not found with the other Cu sources. This difference in soil pH effects caused differences in the respiration, bacterial growth and fungal growth response. Basal soil respiration was negatively affected by Cu addition when the soil was spiked with Cu salts, but almost unaffected by commercial Cu fungicides. Bacterial growth was significantly and negatively affected by Cu addition for all the Cu sources, but Cu toxicity was higher for Cu salts than for commercial Cu fungicides. Fungal growth response was also different for Cu salts and commercial Cu fungicides, but only in the long-term. High Cu amendments using Cu salts stimulated fungal growth, whereas for commercial Cu fungicides, these concentrations inhibited fungal growth. Thus, the use of products similar to those used in commercial fungicides is a recommended practice for Cu risk assessments in soil.


Assuntos
Cobre/toxicidade , Fungicidas Industriais/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Poluição Ambiental , Sais , Solo
15.
J Environ Manage ; 248: 109346, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31394479

RESUMO

Equilibrium propiconazole and terbutryn adsorption characteristics were evaluated in ten acid vineyard soils with a wide range of organic matter and copper concentrations using batch experiments. Adsorption data from equilibrium adsorption experiments were generally well described by linear and Freundlich models. Parameters from these models showed that soil organic matter played a key role of propiconazole adsorption processes, but also the amorphous Fe oxides content in soils. Soil organic matter positively influenced terbutryn adsorption, whereas increases in exchangeable copper decreased terbutryn adsorption. Desorption experiments showed that both, propiconazole and terbutryn adsorption in soils was quite irreversible, i.e. the amount of pesticides desorbed after its adsorption was always less than 50%.


Assuntos
Poluentes do Solo , Solo , Adsorção , Triazinas , Triazóis
16.
Environ Res ; 178: 108669, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31450146

RESUMO

Antibiotics spread into the environment can cause soil and water degradation. Specifically, tetracycline antibiotics (TCs) are among those most consumed in veterinary medicine, and near 90% of the doses administered to animals are excreted as original compounds, due to poor absorption. In this study we investigated competitive soil adsorption/desorption for three tetracycline antibiotics (tetracycline: TC, oxytetracycline: OTC, and chlortetracycline: CTC), usually spread on soils by slurry fertilization, affecting to soil degradation due to chemical pollution. The study was carried out on six soils selected according to their pH values (4.49-7.06), and organic matter contents (1.07-10.92%). The competitive experiments were performed in ternary systems (adding all three TCs simultaneously, using five equal and increasing concentrations, from 17 to 200 µmol L-1). The results were compared with those obtained in simple systems (adding individual antibiotics separately), for the same final concentration (in this case, 200 µmol L-1) and for different concentrations (200 µmol L-1 in the simple systems, versus 600 µmol L-1 in the ternary systems, resulting from the sum of 200 µmol L-1 of each of the three antibiotics). In all cases, batch-type adsorption/desorption experiments were carried out, with 24 h as contact time. Those soils with higher organic matter content adsorbed 100% of the TCs, with desorption being always lower than 3%. In soils with less organic matter, adsorption decreased as the dose of added antibiotic increased, due to competition for adsorption sites. CTC was the most retained among the three TCs (up to 20% more than the other when high doses of antibiotic were added). In the simple systems, percentage adsorption was always high (>85%) for the three TCs; however, percentage adsorption decreased in the ternary systems, reaching just 65% and 40% (for equal and different ionic strength, respectively) in soils with low organic matter contents. These results show the environmental and public health relevance of competition among the three TCs. In fact, the highest risk of entering the food chain takes place when these antibiotics are spread together on soils with low organic matter content, especially in the case of TC and CTC, which are the least adsorbed and the most desorbed molecules.


Assuntos
Poluentes do Solo/química , Tetraciclina/química , Adsorção , Animais , Antibacterianos , Clortetraciclina/química , Concentração de Íons de Hidrogênio , Oxitetraciclina/química , Solo
17.
Sci Total Environ ; 678: 30-32, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075596

RESUMO

The Virtual Special Issue (VSI) "Antibiotics and Heavy Metals in the Environment: Facing the Challenge" received more than 100 submissions from research teams around the world. Finally, more than 50 papers were accepted and published. These very interesting research papers allow going ahead in the knowledge of different aspects which determine the fate of antibiotics and heavy metals in the environmental. The success of the VSI, as well as reports from scientific databases, indicate that this field of research is clearly growing, which is expected to continue, especially considering emerging pollutants as a whole.

18.
J Environ Manage ; 202(Pt 1): 167-177, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28734201

RESUMO

The effects of adding two winery wastes, perlite waste (PW) and bentonite waste (BW), to an acid vineyard soil were assessed using some chemical and biological soil properties in a field study that lasted 18 months. The addition of PW (up to 81 Mg ha-1) had neither significant nor permanent effects on soil characteristics such as the pH, organic matter content or nutrient concentrations, the amounts of copper or zinc, or the electrical conductivity. Moreover, no persistent negative effects were found on the enzymatic activities after PW application. In contrast, soil that was amended with up to 71 Mg BW ha-1 showed increases in its soil pH values, exchangeable potassium and water soluble potassium and phosphorus contents. In addition, it caused significant increases in the electrical conductivity and water-soluble Cu. In addition, the phosphomonoesterase enzymatic activity decreased significantly (up to 28%) in response to the amendment with 71 Mg BW ha-1. These results showed that adding BW and PW to the soil may be a good agronomic practice for recycling these types of wastes. However, in the case of PW, its use as a soil amendment must be performed with caution to control its possible harmful effects.


Assuntos
Cobre/química , Fazendas , Solo , Fracionamento Químico , Fósforo , Poluentes do Solo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28753919

RESUMO

Aiming to investigate the efficacy of different materials as bio-sorbents for the purification of As-polluted waters, batch-type experiments were employed to study As(V) sorption and desorption on oak ash, pine bark, hemp waste, mussel shell, pyritic material, and soil samples, as a function of the As(V) concentration added. Pyritic material and oak ash showed high sorption (90% and >87%) and low desorption (<2% and <7%). Alternatively, hemp waste showed low retention (16% sorption and 100% desorption of the amount previously sorbed), fine shell and pine bark sorbed <3% and desorbed 100%, the vineyard soil sample sorbed 8% and released 85%, and the forest soil sample sorbed 32% and desorbed 38%. Sorption data fitted well to the Langmuir and Freundlich models in the case of both soil samples and the pyritic material, but only to the Freundlich equation in the case of the various by-products. These results indicate that the pyritic material and oak ash can be considered efficient As(V) sorbents (thus, useful in remediation of contaminated sites and removal of that pollutant), even when As(V) concentrations up to 6 mmol L-1 are added, while the other materials that were tested cannot retain or remove As(V) from polluted media.


Assuntos
Arsênio/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Resíduos , Adsorção , Exoesqueleto , Animais , Bivalves , Cannabis , Florestas , Pinus , Casca de Planta , Quercus , Solo/química
20.
Environ Sci Technol ; 51(7): 3694-3702, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28287716

RESUMO

Biocides are common additives in building materials. In-can and film preservatives in polymer-resin render and paint, as well as wood preservatives are used to protect facade materials from microbial spoilage. Biocides leach from the facade material with driving rain, leading to highly polluted runoff water (up to several mg L-1 biocides) being infiltrated into the soil surrounding houses. In the present study the degradation rates in soil of 11 biocides used for the protection of building materials were determined in laboratory microcosms. The results show that some biocides are degraded rapidly in soil (e.g., isothiazolinones: T1/2 < 10 days) while others displayed higher persistence (e.g., terbutryn, triazoles: T1/2 ≫ 120 days). In addition, mass balances of terbutryn and octylisothiazolinone were determined, including nine (terbutryn) and seven (octylisothiazolinone) degradation products, respectively. The terbutryn mass balance could be closed over the entire study period of 120 days and showed that relative persistent metabolites were formed, while the mass balances for octylisothiazolinone could not be closed. Octylisothiazolinone degradation products did not accumulate over time suggesting that the missing fraction was mineralized. Microtox-tests revealed that degradation products were less toxic toward the bacterium Aliivibrio fischeri than their parent compounds. Rain is mobilizing these biocides from the facades and transports them to the surrounding soils; thus, rainfall events control how often new input to the soil occurs. Time intervals between rainfall events in Northern Europe are shorter than degradation half-lives even for many rapidly degraded biocides. Consequently, residues of some biocides are likely to be continuously present due to repeated input and most biocides can be considered as "pseudo-persistent"-contaminants in this context. This was verified by (sub)urban soil screening, where concentrations of up to 0.1 µg g-1 were detected for parent compounds as well as terbutryn degradation products in soils below biocide treated facades.


Assuntos
Solo , Poluentes Químicos da Água , Desinfetantes/química , Cinética , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...