Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34770817

RESUMO

Tuberculosis (TB) is an infectious disease that causes a great number of deaths in the world (1.5 million people per year). This disease is currently treated by administering high doses of various oral anti-TB drugs for prolonged periods (up to 2 years). While this regimen is normally effective when taken as prescribed, many people with TB experience difficulties in complying with their medication schedule. Furthermore, the oral administration of standard anti-TB drugs causes severe side effects and widespread resistances. Recently, we proposed an original platform for pulmonary TB treatment consisting of mannitol microspheres (Ma MS) containing iron (III) trimesate metal-organic framework (MOF) MIL-100 nanoparticles (NPs). In the present work, we loaded this system with the first-line anti-TB drug isoniazid (INH) and evaluated both the viability and safety of the drug vehicle components, as well as the cell internalization of the formulation in alveolar A549 cells. Results show that INH-loaded MOF (INH@MIL-100) NPs were efficiently microencapsulated in Ma MS, which displayed suitable aerodynamic characteristics for pulmonary administration and non-toxicity. MIL-100 and INH@MIL-100 NPs were efficiently internalized by A549 cells, mainly localized in the cytoplasm. In conclusion, the proposed micro-nanosystem is a good candidate for the pulmonary administration of anti-TB drugs.


Assuntos
Antituberculosos/farmacologia , Isoniazida/farmacologia , Estruturas Metalorgânicas/farmacologia , Tuberculose Pulmonar/tratamento farmacológico , Células A549 , Administração por Inalação , Antituberculosos/administração & dosagem , Antituberculosos/química , Cápsulas/administração & dosagem , Cápsulas/química , Cápsulas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Isoniazida/administração & dosagem , Isoniazida/química , Estruturas Metalorgânicas/administração & dosagem , Estruturas Metalorgânicas/química , Tamanho da Partícula
2.
ACS Appl Mater Interfaces ; 12(23): 25676-25682, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32364369

RESUMO

Although nanoscaled metal-organic frameworks (nanoMOFs) are promising drug carriers, their appropriate formulation remains almost unexplored and basically restricted to intravenous routes. Lungs, beneficiating from a large absorption surface and low enzymatic presence, are a very attractive target for both local and systemic delivery. However, pulmonary nanoMOF formulation is a pending and defying task. Thus, we propose a pioneer nanoMOF-based microsphere system as a potential platform for pulmonary administration. A biocompatible nanoMOF was successfully encapsulated in mannitol by a simple and continuous spray-drying technique. Upon intratracheal administration to rats, the resulting formulation, exhibiting optimal properties (i.e., homogeneity, size, density, and spray-drying process yield), was able to release the intact nanoMOF carrier uniformly along the lungs, reaching the bronchioles and alveoli.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Estruturas Metalorgânicas/química , Microesferas , Administração por Inalação , Animais , Dextranos/química , Manitol/química , Estruturas Metalorgânicas/administração & dosagem , Estudo de Prova de Conceito , Ratos Wistar , alfa-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA