Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 34(11): 108851, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730574

RESUMO

Devil facial tumor disease (DFTD) and its lack of available therapies are propelling the Tasmanian devil population toward extinction. This study demonstrates that cholesterol homeostasis and carbohydrate energy metabolism sustain the proliferation of DFTD cells in a cell-type-dependent manner. In addition, we show that the liver-X nuclear receptor-ß (LXRß), a major cholesterol cellular sensor, and its natural ligand 24S-hydroxycholesterol promote the proliferation of DFTD cells via a metabolic switch toward aerobic glycolysis. As a proof of concept of the role of cholesterol homeostasis on DFTD proliferation, we show that atorvastatin, an FDA-approved statin-drug subtype used against human cardiovascular diseases that inhibits cholesterol synthesis, shuts down DFTD energy metabolism and prevents tumor growth in an in vivo DFTD-xenograft model. In conclusion, we show that intervention against cholesterol homeostasis and carbohydrate-dependent energy metabolism by atorvastatin constitutes a feasible biochemical treatment against DFTD, which may assist in the conservation of the Tasmanian devil.


Assuntos
Colesterol/metabolismo , Neoplasias Faciais/metabolismo , Neoplasias Faciais/veterinária , Homeostase , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Receptores X do Fígado/metabolismo , Marsupiais/metabolismo , Aerobiose/efeitos dos fármacos , Animais , Atorvastatina/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Faciais/patologia , Feminino , Glicólise/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxisteróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
iScience ; 24(2): 102071, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554072

RESUMO

Excessive consumption of high-fructose diets is associated with insulin resistance, obesity, and non-alcoholic fatty liver disease (NAFLD). However, fructose differentially affects hepatic regulation of lipogenesis in males and females. Hence, additional studies are necessary in order to find strategies taking gender disparities in fructose-induced liver damage into consideration. Although the eighth member of facilitated glucose transporters (GLUT8) has been linked to fructose-induced macrosteatosis in female mice, its contribution to the inflammatory state of NAFLD remains to be elucidated. Combining pharmacological, biochemical, and proteomic approaches, we evaluated the preventive effect of targeted liver GLUT8 silencing on liver injury in a mice female fructose-induced non-alcoholic steatohepatitis female mouse model. Liver GLUT8-knockdown attenuated fructose-induced ER stress, recovered liver inflammation, and dramatically reduced fatty acid content, in part, via the omega oxidation. Therefore, this study links GLUT8 with liver inflammatory response and suggests GLUT8 as a potential target for the prevention of NAFLD.

3.
Curr Biol ; 23(15): 1489-96, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23871243

RESUMO

Lipid droplets (LDs) are dynamic organelles that collect, store, and supply lipids [1]. LDs have a central role in the exchange of lipids occurring between the cell and the environment and provide cells with substrates for energy metabolism, membrane synthesis, and production of lipid-derived molecules such as lipoproteins or hormones. However, lipid-derived metabolites also cause progressive lipotoxicity [2], accumulation of reactive oxygen species (ROS), endoplasmic reticulum stress, mitochondrial malfunctioning, and cell death [2]. Intracellular accumulation of LDs is a hallmark of prevalent human diseases, including obesity, steatosis, diabetes, myopathies, and arteriosclerosis [3]. Indeed, nonalcoholic fatty liver disease is the most common cause of abnormal hepatic function among adults [4, 5]. Lipotoxicity gradually promotes cellular ballooning and disarray, megamitochondria, accumulation of Mallory's hyaline in hepatocytes, and inflammation, fibrosis, and cirrhosis in the liver. Here, using confocal microscopy, serial-block-face scanning electron microscopy, and flow cytometry, we show that LD accumulation is heterogeneous within a cell population and follows a positive skewed distribution. Lipid availability and fluctuations in biochemical networks controlling lipolysis, fatty acid oxidation, and protein synthesis contribute to cell-to-cell heterogeneity. Critically, this reversible variability generates a subpopulation of cells that effectively collect and store lipids. This high-lipid subpopulation accumulates more LDs and more ROS and reduces the risk of lipotoxicity to the population without impairing overall lipid homeostasis, since high-lipid cells can supply stored lipids to the other cells. In conclusion, we demonstrate fat storage compartmentalization within a cell population and propose that this is a protective social organization to reduce lipotoxicity.


Assuntos
Hepatócitos/citologia , Metabolismo dos Lipídeos , Lipídeos/química , Animais , Compostos de Boro/metabolismo , Ácidos Graxos/metabolismo , Citometria de Fluxo , Hepatócitos/metabolismo , Lipídeos/fisiologia , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
4.
Hepatology ; 55(5): 1574-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22105343

RESUMO

UNLABELLED: Caveolin-1 (CAV1) is a structural protein of caveolae involved in lipid homeostasis and endocytosis. Using newly generated pure Balb/C CAV1 null ((Balb/C)CAV1-/-) mice, CAV1-/- mice from Jackson Laboratories ((JAX)CAV1-/-), and CAV1-/- mice developed in the Kurzchalia Laboratory ((K)CAV1-/-), we show that under physiological conditions CAV1 expression in mouse tissues is necessary to guarantee an efficient progression of liver regeneration and mouse survival after partial hepatectomy. Absence of CAV1 in mouse tissues is compensated by the development of a carbohydrate-dependent anabolic adaptation. These results were supported by extracellular flux analysis of cellular glycolytic metabolism in CAV1-knockdown AML12 hepatocytes, suggesting cell autonomous effects of CAV1 loss in hepatic glycolysis. Unlike in (K)CAV1-/- livers, in (JAX)CAV1-/- livers CAV1 deficiency is compensated by activation of anabolic metabolism (pentose phosphate pathway and lipogenesis) allowing liver regeneration. Administration of 2-deoxy-glucose in (JAX)CAV1-/- mice indicated that liver regeneration in (JAX)CAV1-/- mice is strictly dependent on hepatic carbohydrate metabolism. Moreover, with the exception of regenerating (JAX)CAV1-/- livers, expression of CAV1 in mice is required for efficient hepatic lipid storage during fasting, liver regeneration, and diet-induced steatosis in the three CAV1-/- mouse strains. Furthermore, under these conditions CAV1 accumulates in the lipid droplet fraction in wildtype mouse hepatocytes. CONCLUSION: Our data demonstrate that lack of CAV1 alters hepatocyte energy metabolism homeostasis under physiological and pathological conditions.


Assuntos
Caveolina 1/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Regeneração Hepática/fisiologia , Análise de Variância , Animais , Análise Química do Sangue , Proliferação de Células , Cromatografia em Camada Fina/métodos , Desoxiglucose/farmacologia , Modelos Animais de Doenças , Feminino , Hepatectomia , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Homeostase , Metabolismo dos Lipídeos/fisiologia , Regeneração Hepática/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...