Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21853, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318571

RESUMO

Interleukin (IL)-6 is a pleiotropic cytokine involved in the regulation of hematological and immune responses. IL-6 is secreted chiefly by stromal cells, but little is known about its precise role in the homeostasis of human mesenchymal stromal cells (hMSCs) and the role it may play in hMSC-mediated immunoregulation. We studied the role of IL-6 in the biology of bone marrow derived hMSC in vitro by silencing its expression using short hairpin RNA targeting. Our results show that IL-6 is involved in immunosuppression triggered by hMSCs. Cells silenced for IL-6 showed a reduced capacity to suppress activated T-cell proliferation. Moreover, silencing of IL-6 significantly blocked the capacity of hMSCs to proliferate. Notably, increasing the intracellular level of IL-6 but not recovering the extracellular level could restore the proliferative impairment observed in IL-6-silenced hMSC. Our data indicate that IL-6 signals in hMSCs by a previously undescribed intracellular mechanism.


Assuntos
Proliferação de Células , Tolerância Imunológica , Interleucina-6/imunologia , Células-Tronco Mesenquimais/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Técnicas de Cocultura , Humanos , Células-Tronco Mesenquimais/citologia , Linfócitos T/citologia
2.
Eur J Immunol ; 44(2): 480-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307058

RESUMO

Although mesenchymal stromal cells (MSCs) possess the capacity to modulate immune responses, little is known about the mechanisms that underpin these processes. In this study, we show that immunosupression is mediated by activation of nuclear factor kappa B (NF-κB) in human MSCs. This pathway is activated by TNF-α that is generated following TCR stimulation of T cells. Inhibition of NF-κB through silencing of IκB kinase ß or the TNF-α receptor abolishes the immunosuppressive capacity of MSCs. Our data also indicate that MSC-associated NF-κB activation primarily leads to inhibition of T-cell proliferation with little effect on expression of the activation markers CD69 and CD25. Thus, our data support the hypothesis that the TNF-α/NF-κB signalling pathway is required for the initial priming of immunosuppressive function in human MSCs. Interestingly, drugs that interfere with NF-κB activation significantly antagonise the immunoregulatory effect of MSCs, which could have important implications for immunosuppression regimens in the clinic.


Assuntos
Ativação Linfocitária/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Proliferação de Células , Células Cultivadas , Humanos , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , NF-kappa B/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologia
3.
Bone Marrow Res ; 2013: 203643, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24187625

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent cells found in connective tissues that can differentiate into bone, cartilage, and adipose tissue. Interestingly, they can regulate immune responses in a paracrine way and allogeneic MSCs do not elicit immune response. These properties have encouraged a number of clinical trials in a broad range of regenerative therapies. Although these trials were first focused on their differentiation properties, in the last years, the immunosuppressive features have gained most of the attention. In this review, we will summarize the up-to-date knowledge about the immunosuppressive mechanisms of MSCs in vivo and in vitro and the most promising approaches in clinical investigation.

4.
Stem Cells Dev ; 21(14): 2581-91, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22455388

RESUMO

Epigenetic changes are regarded as emerging major players for hematopoietic stem cell (HSC) biology. Although some histone deacetylase (HDAC) inhibitors, such as valproic acid (VA), induce differentiation and apoptosis in a variety of leukemic cells in vitro, they produce a favorable effect on the expansion of normal HSCs. In this study, we have identified the VA target HDAC3 as a negative regulator of umbilical cord blood HSC expansion. We demonstrate that knockdown of the transcript dramatically improves CD34+ cell expansion, which correlates with a higher potential to generate colony-forming units in functional assays. We show that this effect is mediated at the level of primitive hematopoietic cells and that it is not due to negative effects on specific cell commitment or alterations in the cell cycle. HDAC3 inhibition does not block commitment to the monocytic lineage and the maturation of monocyte precursors, which are the main inhibited pathways in the presence of VA. Therefore, our results identify HDAC3 as a promising target for therapies aiming to expand HSCs.


Assuntos
Proliferação de Células , Células-Tronco Hematopoéticas/enzimologia , Histona Desacetilases/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Sangue Fetal/citologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Células HEK293 , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Lentivirus/genética , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , RNA Interferente Pequeno/genética , Ácido Valproico/farmacologia
5.
J Bone Miner Res ; 25(10): 2115-25, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20499359

RESUMO

Although marrow adipocytes and osteoblasts derive from a common bone marrow stromal cells (BMSCs), the mechanisms that underlie osteoporosis-associated bone loss and marrow adipogenesis during prolonged steroid treatment are unclear. We show in human BMSCs (hBMSCs) that glucocorticoid receptor (GR) signaling in response to high concentrations of glucocorticoid (GC) supports adipogenesis but inhibits osteogenesis by reducing c-Jun expression and hBMSC proliferation. Conversely, significantly lower concentrations of GC, which permit hBMSC proliferation, are necessary for normal bone mineralization. In contrast, platelet-derived growth factor (PDGF) signaling increases both JNK/c-Jun activity and hBMSC expansion, favoring osteogenic differentiation instead of adipogenesis. Indeed, PDGF antagonizes the proadipogenic qualities of GC/GR signaling. Thus our results reveal a novel c-Jun-centered regulatory network of signaling pathways in differentiating hBMSCs that controls the proliferation-dependent balance between osteogenesis and adipogenesis.


Assuntos
Células da Medula Óssea/citologia , Receptores de Glucocorticoides/fisiologia , Células Estromais/citologia , Fator de Transcrição AP-1/fisiologia , Adipogenia/fisiologia , Diferenciação Celular , Proliferação de Células , Citometria de Fluxo , Humanos , Osteogênese/fisiologia
6.
Cell Cycle ; 7(24): 3915-27, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19066456

RESUMO

E2F transcription factors control diverse biological processes through regulation of target gene expression. However, the mechanism by which this regulation is established, and the relative contribution of each E2F member are still poorly defined. We have investigated the role of E2F2 in regulating cellular proliferation. We show that E2F2 is required for the normal G(0)/G(1) phase because targeted disruption of the E2F2 gene causes T cells to enter S phase early and to undergo accelerated cell division. A large set of E2F target genes involved in DNA replication and cell cycle progression (such as Mcm's, cyclins and Cdc2a) that are silent in G(0) and typically transcribed late in G(1) phase are already actively expressed in quiescent T cells and MEFs lacking E2F2. The classic E2F activators, E2F1 and E2F3, are largely dispensable for this process because compound loss of E2F1(-/-) and E2F2(-/-) produces a comparably shortened G(0)/G(1) phase, with early S phase entry. Likewise, shRNA knockdown of E2F3 does not alter significantly the E2F2(-/-) phenotype. Chromatin immunoprecipitation analysis indicates that in wild-type cells the promoters of the aberrantly early-transcribed genes are occupied by E2F2 in G(0), suggesting a direct role for E2F2 in transcriptional repression. We conclude that E2F2 functions to transcriptionally repress cell cycle genes to establish the G(0) state.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fator de Transcrição E2F2/metabolismo , Animais , Células Cultivadas , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F3/metabolismo , Fase G1 , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Interferência de RNA , Fase de Repouso do Ciclo Celular , Fase S , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...