Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(2): 1000-1009, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173271

RESUMO

Semihydrogenation of internal alkynes catalyzed by the air-stable imidazolyl amino [Mo3S4Cl3(ImNH2)3]+ cluster selectively affords the (Z)-alkene under soft conditions in excellent yields. Experimental results suggest a sulfur-based mechanism with the formation of a dithiolene adduct through interaction of the alkyne with the bridging sulfur atoms. However, computational studies indicate that this mechanism is unable to explain the experimental outcome: mild reaction conditions, excellent selectivity toward the (Z)-isomer, and complete deuteration of the vinylic positions in the presence of CD3OD and CH3OD. An alternative mechanism that explains the experimental results is proposed. The reaction begins with the hydrogenation of two of the Mo3(µ3-S)(µ-S)3 bridging sulfurs to yield a bis(hydrosulfide) intermediate that performs two sequential hydrogen atom transfers (HAT) from the S-H groups to the alkyne. The first HAT occurs with a spin change from singlet to triplet. After the second HAT, the singlet state is recovered. Although the dithiolene adduct is more stable than the hydrosulfide species, the large energy required for the subsequent H2 addition makes the system evolve via the second alternative pathway to selectively render the (Z)-alkene with a lower overall activation barrier.

2.
Dalton Trans ; 52(40): 14606-14612, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37786386

RESUMO

The reaction of three [FeII(TSC)2] complexes, where TSC is a pyridine-substituted thiosemicarbazone of the HDpT or HBpT families, with H2O2 in acetonitrile solution does not result in the accumulation of the corresponding [FeIII(TSC)2]+ complexes. Instead, a mixture of diamagnetic low-spin FeII species is generated. According to the MS spectra, those species result from the sequential addition of up to five oxygen atoms to the complex. This capability for the addition of oxygen atoms suggested that oxygen atom transfer to external substrates may be possible, and these TSC complexes were tested in the oxidation of thioanisole and styrene with H2O2. As hypothesized, the complexes are active in both the oxidation of thioanisole to its sulfoxide and styrene to benzaldehyde, with time scales indicating the participation of the species containing added oxygen atoms. Interestingly, the free thiosemicarbazone ligands and the [Zn(Dp44mT)2] complex also catalyse the selective sulfoxidation of thioanisole, but they are ineffective in catalysing styrene oxidation to benzaldehyde. These findings open up new directions for the development of thiosemicarbazone-based metal catalysts for oxidation processes.

3.
Inorg Chem ; 61(42): 16730-16739, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36239439

RESUMO

Formic acid (FA) dehydrogenation is an attractive process in the implementation of a hydrogen economy. To make this process greener and less costly, the interest nowadays is moving toward non-noble metal catalysts and additive-free protocols. Efficient protocols using earth abundant first row transition metals, mostly iron, have been developed, but other metals, such as molybdenum, remain practically unexplored. Herein, we present the transformation of FA to form H2 and CO2 through a cluster catalysis mechanism mediated by a cuboidal [Mo3S4H3(dmpe)3]+ hydride cluster in the absence of base or any other additive. Our catalyst has proved to be more active and selective than the other molybdenum compounds reported to date for this purpose. Kinetic studies, reaction monitoring, and isolation of the [Mo3S4(OCHO)3(dmpe)3]+ formate reaction intermediate, in combination with DFT calculations, have allowed us to formulate an unambiguous mechanism of FA dehydrogenation. Kinetic studies indicate that the reaction at temperatures up to 60 °C ends at the triformate complex and occurs in a single kinetic step, which can be interpreted in terms of statistical kinetics at the three metal centers. The process starts with the formation of a dihydrogen-bonded species with Mo-H···HOOCH bonds, detected by NMR techniques, followed by hydrogen release and formate coordination. Whereas this process is favored at temperatures up to 60 °C, the subsequent ß-hydride elimination that allows for the CO2 release and closes the catalytic cycle is only completed at higher temperatures. The cycle also operates starting from the [Mo3S4(OCHO)3(dmpe)3]+ formate intermediate, again with preservation of the cluster integrity, which adds our proposal to the list of the infrequent cluster catalysis reaction mechanisms.

4.
J Inorg Biochem ; 203: 110918, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31759263

RESUMO

A new manganese(III) complex [MnL1(DCA)(H2O)](H2O),1 [H2L1 is the chelating ligand N,N'-bis(2-hydroxy-3-methoxybenzylidene)-1,2-diaminopropane, and DCA is dicyanamide], has been prepared and characterized by different analytical and spectroscopic techniques. The tetragonally elongated octahedral geometry for the manganese coordination sphere was revealed by X-ray diffraction studies for 1. The antioxidant behavior of this complex and other manganese(III)-salen type complexes was tested through superoxide dismutase and catalase probes, and through the study of their neuroprotective effects in SH-SY5Y neuroblastoma cells. In this human neuronal model, these model complexes were found to improve cell survival in an oxidative stress model. During studies aimed to getting a better understanding of the kinetics of the processes involved in this antioxidant behavior, an important effect on the solvent in the kinetics of reaction of the complexes with H2O2 was revealed that suggests a change in the mechanism of reaction of the complexes. The kinetic data in methanol and buffered aqueous solutions correlate well with the results of the test of catalase activity, thus showing that the rate determining step in the catalytic cycle corresponds to the initial reaction of the complexes with H2O2.


Assuntos
Antioxidantes/síntese química , Complexos de Coordenação/síntese química , Etilenodiaminas/química , Manganês/química , Fármacos Neuroprotetores/síntese química , Compostos Organometálicos/síntese química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Humanos , Cinética , Fármacos Neuroprotetores/farmacologia , Compostos Organometálicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo
5.
Inorg Chem ; 57(23): 14471-14475, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30450898

RESUMO

ABTS (2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid) oxidation to form its radical cation in the presence of H2O2 is frequently used as a test for determining the peroxidase activity of enzyme mimics. Detailed studies using salen-type Mn(III) complexes show that photochemical processes involving H2O2, ABTS, and the complex itself can lead to erroneous results. The capability of the complexes to act as •OH scavengers can be also relevant when the mechanism of their biological activity is considered.


Assuntos
Benzotiazóis/química , Complexos de Coordenação/química , Peroxidase/metabolismo , Processos Fotoquímicos , Ácidos Sulfônicos/química , Benzotiazóis/metabolismo , Complexos de Coordenação/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Estrutura Molecular , Peroxidase/química , Espectrofotometria Ultravioleta , Ácidos Sulfônicos/metabolismo
6.
Inorg Chem ; 55(19): 9912-9922, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27673370

RESUMO

Treatment of the triangular [Mo3S4Cl3(dbbpy)3]Cl cluster ([1]Cl) with CuCl produces a novel tetrametallic cuboidal cluster [Mo3(CuCl)S4Cl3(dbbpy)3][CuCl2] ([2][CuCl2]), whose crystal structure was determined by X-ray diffraction (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine). This species, which contains two distinct types of Cu(I), is the first example of a diimine-functionalized heterometallic M3M'S4 cluster. Kinetics studies on both the formation of the cubane from the parent trinuclear cluster and its dissociation after treatment with halides, supported by NMR, electrospray ionization mass spectrometry, cyclic voltammetry, and density functional theory calculations, are provided. On the one hand, the results indicate that addition of Cu(I) to [1]+ is so fast that its kinetics can be monitored only by cryo-stopped flow at -85 °C. On the other hand, the release of the CuCl unit in [2]+ is also a fast process, which is unexpectedly assisted by the CuCl2- counteranion in a process triggered by halide (X-) anions. The whole set of results provide a detailed picture of the assembly-disassembly processes in this kind of cluster. Interconversion between trinuclear M3S4 clusters and their heterometallic M3M'S4 derivatives can be a fast process occurring readily under the conditions employed during reactivity and catalytic studies, so their occurrence is a possibility that must be taken into account in future studies.

7.
Chemistry ; 21(42): 14823-33, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26383190

RESUMO

Whereas the cluster [Mo3 S4 (acac)3 (py)3 ](+) ([1](+) , acac=acetylacetonate, py=pyridine) reacts with a variety of alkynes, the cluster [W3 S4 (acac)3 (py)3 ](+) ([2](+) ) remains unaffected under the same conditions. The reactions of cluster [1](+) show polyphasic kinetics, and in all cases clusters bearing a bridging dithiolene moiety are formed in the first step through the concerted [3+2] cycloaddition between the C≡C atoms of the alkyne and a Mo(µ-S)2 moiety of the cluster. A computational study has been conducted to analyze the effect of the metal on these concerted [3+2] cycloaddition reactions. The calculations suggest that the reactions of cluster [2](+) with alkynes feature ΔG(≠) values only slightly larger than its molybdenum analogue, however, the differences in the reaction free energies between both metal clusters and the same alkyne reach up to approximately 10 kcal mol(-1) , therefore indicating that the differences in the reactivity are essentially thermodynamic. The activation strain model (ASM) has been used to get more insights into the critical effect of the metal center in these cycloadditions, and the results reveal that the change in reactivity is entirely explained on the basis of the differences in the interaction energies Eint between the cluster and the alkyne. Further decomposition of the Eint values through the localized molecular orbital-energy decomposition analysis (LMO-EDA) indicates that substitution of the Mo atoms in cluster [1](+) by W induces changes in the electronic structure of the cluster that result in weaker intra- and inter-fragment orbital interactions.

8.
Inorg Chem ; 54(2): 607-18, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25551666

RESUMO

The aminophosphine ligand (2-aminoethyl)diphenylphosphine (edpp) has been coordinated to the W3(µ-S)(µ-S)3 cluster unit to afford trimetallic complex [W3S4Br3(edpp)3](+) (1(+)) in a one-step synthesis process with high yields. Related [W3S4X3(edpp)3](+) clusters (X = F(-), Cl(-), NCS(-); 2(+)-4(+)) have been isolated by treating 1(+) with the corresponding halide or pseudohalide salt. The structure of complexes 1(+) to 4(+) contains an incomplete W3S4 cubane-type cluster unit, and only one of the possible isomers is formed: the one with the phosphorus atoms trans to the capping sulfur and the amino groups trans to the bridging sulphurs. The remaining coordination position on each metal is occupied by X. Detailed studies using stopped-flow, (31)P{(1)H} NMR, and ESI-MS have been carried out in order to understand the solution behavior and the kinetics of interconversion among species 1(+), 2(+), 3(+), and 4(+) in solution. Density functional theory (DFT) calculations have been also carried out on the reactions of cluster 1(+) with the different anions. The whole set of experimental and theoretical data indicate that the actual mechanism of substitutions in these clusters is strongly dependent on the nature of the leaving and entering anions. The interaction between an entering F(-) and the amino group coordinated to the adjacent metal have also been found to be especially relevant to the kinetics of these reactions.


Assuntos
Etilaminas/química , Halogênios/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Fosfinas/química , Enxofre/química , Tungstênio/química , Técnicas de Química Sintética , Cinética , Ligantes , Modelos Moleculares , Conformação Molecular , Teoria Quântica
9.
Chemistry ; 21(7): 2835-44, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25529428

RESUMO

A study, involving kinetic measurements on the stopped-flow and conventional UV/Vis timescales, ESI-MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3 S4 (acac)3 (py)3 ][PF6 ] ([1]PF6 ; acac=acetylacetonate, py=pyridine) with two RCCR alkynes (R=CH2 OH (btd), COOH (adc)) in CH3 CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(µ-S)2 moiety of [1](+) . The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition-state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron-withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.


Assuntos
Alcinos/química , Espectroscopia de Ressonância Magnética/métodos , Reação de Cicloadição , Cinética , Modelos Moleculares
10.
Inorg Chem ; 52(24): 14334-42, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24266451

RESUMO

Reaction of [Mo3(µ3-S)(µ-S)3] clusters with alkynes usually leads to formation of two C-S bonds between the alkyne and two of the bridging sulfides. The resulting compounds contain a bridging alkenedithiolate ligand, and the metal centers appear to play a passive role despite reactions at those sites being well illustrated for this kind of cluster. A detailed study including kinetic measurements and DFT calculations has been carried out to understand the mechanism of reaction of the [Mo3(µ3-S)(µ-S)3(H2O)9](4+) (1) cluster with two different alkynes, 2-butyne-1,4-diol and acetylenedicarboxylic acid. Stopped-flow experiments indicate that the reaction involves the appearance in a single kinetic step of a band at 855 or 875 nm, depending on the alkyne used, a position typical of clusters with two C-S bonds. The effects of the concentrations of the reagents, the acidity, and the reaction medium on the rate of reaction have been analyzed. DFT and TD-DFT calculations provide information on the nature of the product formed, its electronic spectrum and the energy profile for the reaction. The structure of the transition state indicates that the alkyne approaches the cluster in a lateral way and both C-S bonds are formed simultaneously.


Assuntos
Alcinos/química , Complexos de Coordenação/química , Dissulfetos/química , Modelos Moleculares , Molibdênio/química , Teoria Quântica , Sulfetos/química , Cinética
11.
Inorg Chem ; 52(15): 8713-22, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23848838

RESUMO

Water-soluble [M3S4X3(dhbupe)3](+) diphosphino complexes (dhbupe = 1,2-bis(bis(hydroxybutyl)phosphino)ethane), 1(+) (M = Mo, X = Cl) and 2(+) (M = W; X = Br), have been synthesized by extending the procedure used for the preparation of their hydroxypropyl analogues by reaction of the M3S4(PPh3)3X4(solvent)x molecular clusters with the corresponding 1,2-bis(bishydroxyalkyl)diphosphine. The solid state structure of the [M3S4X3(dhbupe)3](+) cation possesses a C3 symmetry with a cuboidal M3S4 unit, and the outer positions are occupied by one halogen and two phosphorus atoms of the diphosphine ligand. At a basic pH, the halide ligands are substituted by hydroxo groups to afford the corresponding [Mo3S4(OH)3(dhbupe)3](+) (1OH(+)) and [W3S4(OH)3(dhbupe)3](+) (2OH(+)) complexes. This behavior is similar to that found in 1,2-bis(bis(hydroxymethyl)phosphino)ethane (dhmpe) complexes and differs from that observed for 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe) derivatives. In the latter case, an alkylhydroxo group of the functionalized diphosphine replaces the chlorine ligands to afford Mo3S4 complexes in which the deprotonated dhprpe acts in a tridentate fashion. Detailed studies based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques have been carried out in order to understand the solution behavior and kinetics of interconversion between the different species formed in solution: 1 and 1OH(+) or 2 and 2OH(+). On the basis of the kinetic results, a mechanism with two parallel reaction pathways involving water and OH(-) attacks is proposed for the formal substitution of halides by hydroxo ligands. On the other hand, reaction of the hydroxo clusters with HX acids occurs with protonation of the OH(-) ligands followed by substitution of coordinated water by X(-).

12.
Inorg Chem ; 51(12): 6794-802, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22668127

RESUMO

The [Mo(3)S(4)Cl(3)(dhprpe)(3)](+) (1(+)) cluster cation has been prepared by reaction between Mo(3)S(4)Cl(4)(PPh(3))(3) (solvent)(2) and the water-soluble 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe, L) ligand. The crystal structure of [1](2)[Mo(6)Cl(14)] has been determined by X-ray diffraction methods and shows the typical incomplete cuboidal structure with a capping and three bridging sulfides. The octahedral coordination around each metal center is completed with a chlorine and two phosphorus atoms of the diphosphine ligand. Depending on the pH, the hydroxo group of the functionalized diphosphine can substitute the chloride ligands and coordinate to the cluster core to give new clusters with tridentate deprotonated dhprpe ligands of formula [Mo(3)S(4)(dhprpe-H)(3)](+) (2(+)). A detailed study based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques has been carried out to understand the behavior of acid-base equilibria and the kinetics of interconversion between the 1(+) and the 2(+) forms. Both conversion of 1(+) to 2(+) and its reverse process occur in a single kinetic step, so that reactions proceed at the three metal centers with statistically controlled kinetics. The values of the rate constants under different conditions are used to discuss on the mechanisms of opening and closing of the chelate rings with coordination or dissociation of chloride.


Assuntos
Complexos de Coordenação/síntese química , Dissulfetos/química , Molibdênio/química , Fosfinas/química , Água/química , Complexos de Coordenação/química , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Solubilidade
13.
Chemistry ; 18(16): 5036-46, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22407761

RESUMO

For many years it has been known that the nine water molecules in [M(3)Q(4)(H(2)O)(9)](4+) cuboidal clusters (M = Mo, W; Q = S, Se) can be replaced by entering ligands, such as chloride or thiocyanate, and kinetic studies carried out mainly on the substitution of the first water molecule at each metal centre reveal that the reaction at the three metal centres occurs with statistical kinetics; that is, a single exponential with a rate constant corresponding to the reaction at the third centre is observed instead of the expected three-exponential kinetic trace. Such simplification of the kinetic equations requires the simultaneous fulfilment of two conditions: first that the three consecutive rate constants are in statistical ratio, and second that the metal centres behave as independent chromophores. The validity of those simplifications has been checked for the case of the reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Cl(-) by using DFT and TD-DFT theoretical calculations. The results of those calculations are in agreement with the available experimental information, which indicates that the H(2)O ligands trans to the µ-S undergo substitution much faster than those trans to the µ(3)-S. Moreover, the energy barriers for the substitution of the first water molecule at the three metal centres are close to each other, the differences being compatible with the small changes in the numerical values of the rate constants required for observation of statistical kinetics. TD-DFT calculations lead to calculated electronic spectra, which are in reasonable agreement with those experimentally measured, but the calculations do not indicate that the three metal centres behave as independent chromophores, although the mathematical conditions required for simplification of the kinetic traces to a single exponential are reasonably well fulfilled at certain wavelengths. A re-examination of the kinetics of the reaction by using global fitting procedures yields results, which are compatible with statistical kinetics, although an alternative interpretation in which substitution only occurs at a single metal centre under reversible conditions is also possible.

14.
Inorg Chem ; 49(13): 5935-42, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20515025

RESUMO

The molybdenum(IV) cluster hydrides of formula [Mo(3)S(4)H(3)(diphosphine)(3)](+) with diphosphine = 1,2-(bis)dimethylphosphinoethane (dmpe) or (+)-1,2-bis-(2R,5R)-2,5-(dimethylphospholan-1-yl)ethane ((R,R)-Me-BPE) have been isolated in moderate to high yields by reacting their halide precursors with borohydride. Complex [Mo(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) as well as its tungsten analogue are obtained in optically pure forms. Reaction of the incomplete cuboidal [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) complex with acids in CH(2)Cl(2) solution shows kinetic features similar to those observed for the related incomplete cuboidal [W(3)S(4)H(3)(dmpe)(3)](+) cluster. However, there is a decrease in the value of the rate constants that is explained as a result of the higher steric effect of the diphosphine. The rate constants for the reaction of both clusters [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) with HCl have similar values, thus indicating a negligible effect of the metal center on the kinetics of reaction of the hydrides coordinated to any of both transition metals.


Assuntos
Molibdênio/química , Compostos Organometálicos/química , Fosfinas/química , Tungstênio/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos Organometálicos/síntese química , Fosfinas/síntese química , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Difração de Raios X
15.
Chemistry ; 16(5): 1613-23, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20029921

RESUMO

The kinetics of reaction of the [W(3)PdS(4)H(3)(dmpe)(3)(CO)](+) hydride cluster (1(+)) with HCl has been measured in dichloromethane, and a second-order dependence with respect to the acid is found for the initial step. In the presence of added BF(4) (-) the second-order dependence is maintained, but there is a deceleration that becomes more evident as the acid concentration increases. DFT calculations indicate that these results can be rationalized on the basis of the mechanism previously proposed for the same reaction of the closely related [W(3)S(4)H(3)(dmpe)(3)](+) cluster, which involves parallel first- and second-order pathways in which the coordinated hydride interacts with one and two acid molecules, and ion pairing to BF(4) (-) hinders formation of dihydrogen bonded adducts able to evolve to the products of proton transfer. Additional DFT calculations are reported to understand the behavior of the cluster in neat acetonitrile and acetonitrile-water mixtures. The interaction of the HCl molecule with CH(3)CN is stronger than the W-H...HCl dihydrogen bond and so the reaction pathways operating in dichloromethane become inefficient, in agreement with the lack of reaction between 1(+) and HCl in neat acetonitrile. However, the attacking species in acetonitrile-water mixtures is the solvated proton, and DFT calculations indicate that the reaction can then go through pathways involving solvent attack to the W centers, while still maintaining the coordinated hydride, which is made possible by the capability of the cluster to undergo structural changes in its core.


Assuntos
Paládio/química , Sulfetos/química , Tungstênio/química , Catálise , Cristalografia por Raios X , Cinética , Estrutura Molecular , Prótons , Solventes
16.
Chemistry ; 15(18): 4582-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19291725

RESUMO

Opening the cluster core: Substitution of the chloride ligand in the novel cationic cluster [W(3)CuS(4)H(3)Cl(dmpe)(3)](+) (see figure; dmpe=1,2-bis(dimethylphosphino)ethane) by acetonitrile is promoted by water addition. Kinetic and density functional theory studies lead to a mechanistic proposal in which acetonitrile or water attack causes the opening of the cluster core with dissociation of one of the Cu--S bonds to accommodate the entering ligand.Reaction of the incomplete cuboidal cationic cluster [W(3)S(4)H(3)(dmpe)(3)](+) (dmpe=1,2-bis(dimethylphosphino)ethane) with Cu(I) compounds produces rare examples of cationic heterodimetallic hydrido clusters of formula [W(3)CuClS(4)H(3)(dmpe)(3)](+) ([1](+)) and [W(3)Cu(CH(3)CN)S(4)H(3)(dmpe)(3)](2+) ([2](2+)). An unexpected conversion of [1](+) into [2](2+), which involves substitution of chloride by CH(3)CN at the copper centre, has been observed in CH(3)CN/H(2)O mixtures. Surprisingly, formation of the acetonitrile complex does not occur in neat acetonitrile and requires the presence of water. The kinetics of this reaction has been studied and the results indicate that the process is accelerated when the water concentration increases and is retarded in the presence of added chloride. Computational studies have also been carried out and a mechanism for the substitution reaction is proposed in which attack at the copper centre by acetonitrile or water causes disruption of the cubane-type core. ESI-MS experiments support the formation of intermediates with an open-core cluster structure. This kind of process is unprecedented in the chemistry of M(3)M'Q(4) (M=Mo, W; Q=S, Se) clusters, and allows for the transient appearance of a new coordination site at the M' site which could explain some aspects of the reactivity and catalytic properties of this kind of clusters.


Assuntos
Cobre/química , Compostos de Tungstênio/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Estrutura Molecular , Termodinâmica , Compostos de Tungstênio/síntese química
17.
Inorg Chem ; 46(18): 7668-77, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17691727

RESUMO

The [Mo3S4Cl3(dhmpe)3]Cl ([1]Cl) cluster has been prepared from [Mo3S7Cl6]2- and the water-soluble 1,2-bis(bis(hydroxymethyl)-phosphino)ethane (dhmpe, L) ligand. The crystal structure has been determined by X-ray diffraction methods and shows the incomplete cuboidal structure typical of the M3Q4 clusters (M=Mo, W; Q=S, Se), with a capping sulfide ligand to the three metal centers and the other three sulfides acting as bridges between two Mo atoms. The octahedral coordination around each metal center is completed with a chlorine and two phosphorus atoms of one L ligand. The chemistry of aqueous solutions of [1]Cl is dominated by the formation of the [Mo3S4L(L-H)2(H2O)]2+ complex ([2]2+), where the three chlorides have been replaced by one water molecule and two alkoxo groups of two different dhmpe ligands, thus leading to a solution structure where the three metal centers are not equivalent. A detailed study based on stopped-flow, 31P{1H} NMR, and electrospray ionization mass spectrometry techniques has been carried out to understand the behavior of [2]2+ in aqueous solution. In this way, it has been established that the addition of an excess of X- (Cl-, SCN-) leads to [Mo3S4X3(dhmpe)3]+ complexes in three resolved kinetic steps that correspond to the sequential coordination of X- at the three metal centers. However, whereas the first two steps involve the opening of the chelate rings formed with the alkoxo groups of the dhmpe ligands, the third one corresponds to the substitution of the coordinated water molecule. These results demonstrate that the asymmetry introduced by the closure of chelate rings at only two of the three Mo centers makes the kinetics of the reaction deviate significantly from the statistical behavior typically associated with M3Q4 clusters. The results obtained for the reaction of [2]2+ with acid and base are also described, and they complete the picture of the aqueous speciation of this cluster.


Assuntos
Dissulfetos/química , Hidrogênio/química , Molibdênio/química , Fosfinas/química , Sulfetos/química , Água/química , Compostos Clorados/química , Cristalografia por Raios X , Dissulfetos/síntese química , Cinética , Ligantes , Metilação , Modelos Moleculares , Estrutura Molecular , Solubilidade , Espectrometria de Massas por Ionização por Electrospray , Sulfetos/síntese química
18.
Inorg Chem ; 45(14): 5576-84, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16813421

RESUMO

Reaction of the incomplete cuboidal [W3S4H3(dmpe)3]+ cluster with a Pd(0) complex under a CO atmosphere produces a rare example of a heterodimetallic hydrido cluster of formula [W3PdS4H3(dmpe)3(CO)]+ ([1]+). There are not significant changes in the W-W bond lengths on going from the trinuclear to the tetranuclear cluster. The average W-W and W-Pd bond distances of 2.769[10] and 2.90[2] A, respectively, are consistent with the presence of single bonds between metal atoms. The heterodimetallic [1]+ complex is easier to oxidize and more difficult to reduce than its trinuclear precursor, which reflects the electron-donating capability of the Pd(CO) fragment. However, mechanistic studies on the reaction of [1]+ with acids show a lower basicity for this complex in comparison with that of its trinuclear precursor, so there is a major electron-density rearrangement within the cluster core upon Pd(CO) coordination. This rearrangement is also reflected in an unusual expansion of the sulfur tetrahedron within the W3PdS4 core with the concomitant elongation of the W-S bond distances by 0.04 A with respect to the analogous bond lengths in the trinuclear precursor. For those thermodynamically favored proton-transfer processes, the reaction mechanism of [1]+ with acids is quite similar to that observed for the incomplete trinuclear cluster, with only small changes in the rate constants. The reaction of [1]+ with HCl in acetonitrile/water mixtures produces [W3PdS4Cl3(dmpe)3(CO)]+ ([2]+) in two kinetically distinguishable steps. Proton transfer occurs in the initial step, in which the W-H bonds are attacked by the acid to yield dihydrogen-bonded adducts that are further attacked by an acetonitrile molecule to give [W3PdS4(CH3CN)3(dmpe)3(CO)]4+ and dihydrogen. The nature of processes involved in the second step are not well-understood with the present data, although it is very likely that these correspond to some secondary processes. In the third resolved step, the coordinated CH3CN ligands in [W3PdS4(CH3CN)3(dmpe)3(CO)]4+ are substituted by Cl- to afford the final [2]+ product. No reaction is observed between [1]+ and HCl in neat acetonitrile, whereas the product of the reaction of [1]+ with HBF4 or Hpts (pts- = p-toluenesulfonate) in this solvent is [W3PdS4(CH3CN)3(dmpe)3(CO)]4+. The reaction occurs in a single kinetic step with a first- (Hpts) or second-order (HBF4) dependence with respect to the acid. The first- and second-order acid dependences can be interpreted through the initial formation of dihydrogen adducts with one or two acid molecules, respectively.

19.
Inorg Chem ; 45(15): 5774-84, 2006 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-16841981

RESUMO

The 1H,19F HOESY spectra of the title compounds in CD2Cl2 solution indicate that the cluster cations form ion pairs with the BF4- and PF6- anions with a well-defined interionic structure that appears to be basically determined essentially by the nature of the X- ligand. For the clusters with X = H and OH, the structure of the ion pairs is such that the counteranion (Y-) and the X- ligands are placed close to each other. However, when the size and electron density of X- increase (X = Br), Y- is forced to move to a different site, far away from X-. The relevance of ion-pairing on the chemistry of these compounds is clearly seen through a decrease in the rate of proton transfer from HCl to the hydride cluster [W3S4H3(dmpe)3]+ in the presence of an excess of BF4-. The kinetic data for this reaction can be rationalized by considering that the ([W3S4H3(dmpe)3]+, BF4-) ion pairs are unproductive in the proton-transfer process. Theoretical calculations indicate that the real behavior can be more complex. Although the cluster can still form adducts with HCl in the presence of BF4-, the structures of the most-stable BF4--containing HCl adducts show H...H distances too large to allow the subsequent release of H2. In addition, the effective concentration of HCl is also reduced because of the formation of adducts as ClH...BF4-. As a consequence of both effects, the proton transfer takes place more slowly than for the case of the dihydrogen-bonded HCl adduct resulting from the unpaired cluster.

20.
Chemistry ; 12(5): 1413-26, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16294357

RESUMO

The reaction of the hydride cluster [W3S4H3(dmpe)3]+ (1, dmpe = 1,2-bis(dimethylphosphanyl)ethane) with acids (HCl, CF3COOH, HBF4) in CH2Cl2 solution under pseudo-first-order conditions of excess acid occurs with three kinetically distinguishable steps that can be interpreted as corresponding to successive formal substitution processes of the coordinated hydrides by the anion of the acid (HCl, CF3COOH) or the solvent (HBF4). Whereas the rate law for the third step changes with the nature of the acid, the first two kinetic steps always show a second-order dependence on acid concentration. In contrast, a single kinetic step with a first-order dependence with respect to the acid is observed when the experiments are carried out with a deficit of acid. The decrease in the T1 values for the hydride NMR signal of 1 in the presence of added HCl suggests the formation of an adduct with a W-H...H-Cl dihydrogen bond. Theoretical calculations for the reaction with HCl indicate that the kinetic results in CH2Cl2 solution can be interpreted on the basis of a mechanism with two competitive pathways. One of the pathways consists of direct proton transfer within the W-H...H-Cl adduct to form W-Cl and H2, whereas the other requires the presence of a second HCl molecule to form a W-H...H-Cl...H-Cl adduct that transforms into W-Cl, H2 and HCl in the rate-determining step. The activation barriers and the structures of the transition states for both pathways were also calculated, and the results indicate that both pathways can be competitive and that the transition states can be described in both cases as a dihydrogen complex hydrogen-bonded to Cl- or HCl2(-).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...