Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biology (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237559

RESUMO

Cardiovascular diseases represent the leading cause of mortality and morbidity worldwide, and age is an important risk factor. Preclinical models provide supportive evidence toward age-related cardiac changes, as well as allow for the study of pathological aspects of the disease. In the present work, we evaluated the electrocardiogram (ECG) recording in the O. degus during the aging process in both females and males. Taking into account the age and sex, our study provides the normal ranges for the heart rate, duration and voltage of the ECG waves and intervals, as well as electrical axis deviation. We found that the QRS complex duration and QTc significantly increased with age, whereas the heart rate significantly decreased. On the other hand, the P wave, PR and QTc segments durations, S wave voltage and electrical axis were found to be significantly different between males and females. The heart rhythm was also altered in aged animals, resulting in an increased incidence of arrhythmias, especially in males. Based on these results, we suggest that this rodent model could be useful for cardiovascular research, including impacts of aging and biological sex.

2.
Nutrients ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049550

RESUMO

Magnesium (Mg) has a vital role in the human body, and the kidney is a key organ in the metabolism and excretion of this cation. The objective of this work is to compile the available evidence regarding the role that Mg plays in health and disease, with a special focus on the elderly population with chronic kidney disease (CKD) and the eventual sex differences. A narrative review was carried out by executing an exhaustive search in the PubMed, Scopus, and Cochrane databases. Ten studies were found in which the role of Mg and sex was evaluated in elderly patients with CKD in the last 10 years (2012-2022). The progression of CKD leads to alterations in mineral metabolism, which worsen as the disease progresses. Mg can be used as a coadjuvant in the treatment of CKD patients to improve glomerular filtration, but its use in clinical applications needs to be further characterized. In conclusion, there's a need for well-designed prospective clinical trials to advise and standardize Mg supplementation in daily clinical practice, taking age and sex into consideration.


Assuntos
Magnésio , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Idoso , Progressão da Doença , Estudos Prospectivos , Rim , Envelhecimento , Taxa de Filtração Glomerular
3.
Food Funct ; 13(11): 6306-6316, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35611932

RESUMO

Gut microbiota alteration (gut dysbiosis) occurs during the onset and progression of Parkinson's disease. Gut dysbiosis biomarkers could be relevant to prodromal disease. Urolithins, anti-inflammatory metabolites produced from some dietary polyphenols by specific gut microbial ecologies (urolithin metabotypes), have been proposed as biomarkers of gut microbiota composition and functionality. However, this has not been explored in Parkinson's disease patients. The current study aimed to assess associations between urolithin metabotypes, gut dysbiosis and disease severity in Parkinson's disease patients. Participants (52 patients and 117 healthy controls) provided stool samples for microbiota sequencing and urine samples for urolithin profiling before and after consuming 30 g of walnuts for three days. Data on demographics, medication, disease duration and Hoehn and Yahr disease stage were collected. We observed a significant gradual increase of urolithin non-producers (metabotype-0) as the disease severity increased. The gut microbiome of metabotype-0 patients and patients with the greatest severity was characterized by a more altered bacterial composition, i.e., increased pro-inflammatory Enterobacteriaceae and reduced protective bacteria against autoimmune and inflammatory processes, including butyrate and urolithin-producing bacteria (Lachnospiraceae members and Gordonibacter). Besides, their microbiome was characterized by predictive functions of lipopolysaccharide biosynthesis and metabolism of glutathione, cysteine and methionine that could indirectly reflect the gut pro-inflammatory status. Urolithin detection in urine is a feasible, non-invasive and fast approach that can reflect gut microbiome dysbiosis and intestinal inflammation in Parkinson's disease patients. Our current study could provide novel strategies for improving diagnostics, and for preventing and treating disease progression in microbiota-based interventions.


Assuntos
Microbioma Gastrointestinal , Juglans , Doença de Parkinson , Bactérias/genética , Bactérias/metabolismo , Biomarcadores/metabolismo , Disbiose , Humanos , Juglans/metabolismo
4.
Neuroscientist ; 28(6): 530-542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33583239

RESUMO

It has been more than 200 years since James Parkinson made the first descriptions of the disease that bears his name. Since then, knowledge about Parkinson's disease has been improved, and its pathophysiology, diagnosis, and treatments are well described in the scientific and medical literature. However, there is no way to prevent the disease from its progressive nature yet and only its symptoms can be minimized. It is known that the process of neurodegeneration begins before the onset of motor signs and symptoms of the disease, when diagnosis is usually made. Therefore, recognizing manifested non-motor symptoms can make an early diagnosis possible and lead to a better understanding of the disease. Autonomic dysfunctions are important non-motor manifestations of Parkinson's disease and affect the majority of patients. Importantly, heart failure is the third leading cause of death in people suffering from Parkinson's disease. Several evidences have shown the correlation between Parkinson's disease and the preexistence of cardiovascular diseases. Therefore, cardiovascular monitoring and identification of its dysfunctions can have a prodromal role for Parkinson's disease. This review presents studies of the literature that can lead to a better understanding of Parkinson's disease with special attention to its relation to heart and cardiovascular parameters.


Assuntos
Doenças do Sistema Nervoso Autônomo , Cardiopatias , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doenças do Sistema Nervoso Autônomo/etiologia , Doenças do Sistema Nervoso Autônomo/diagnóstico , Cardiopatias/complicações
5.
Cell Mol Neurobiol ; 42(5): 1283-1300, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33387119

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder marked primarily by motor symptoms such as rigidity, bradykinesia, postural instability and resting tremor associated with dopaminergic neuronal loss in the Substantia Nigra pars compacta (SNpc) and deficit of dopamine in the basal ganglia. These motor symptoms can be preceded by pre-motor symptoms whose recognition can be useful to apply different strategies to evaluate risk, early diagnosis and prevention of PD progression. Although clinical characteristics of PD are well defined, its pathogenesis is still not completely known, what makes discoveries of therapies capable of curing patients difficult to be reached. Several theories about the cause of idiopathic PD have been investigated and among them, the key role of inflammation, microglia and the inflammasome in the pathogenesis of PD has been considered. In this review, we describe the role and relation of both the inflammasome and microglial activation with the pathogenesis, symptoms, progression and the possibilities for new therapeutic strategies in PD.


Assuntos
Inflamassomos , Doença de Parkinson , Humanos , Inflamação/patologia , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença de Parkinson/patologia
6.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948285

RESUMO

Dysautonomia is a common non-motor symptom in Parkinson's disease (PD). Most dysautonomic symptoms appear due to alterations in the peripheral nerves of the autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. The degeneration of sympathetic nerve fibers and neurons leads to cardiovascular dysfunction, which is highly prevalent in PD patients. Cardiac alterations such as orthostatic hypotension, heart rate variability, modifications in cardiogram parameters and baroreflex dysfunction can appear in both the early and late stages of PD, worsening as the disease progresses. In PD patients it is generally found that parasympathetic activity is decreased, while sympathetic activity is increased. This situation gives rise to an imbalance of both tonicities which might, in turn, promote a higher risk of cardiac damage through tachycardia and vasoconstriction. Cardiovascular abnormalities can also appear as a side effect of PD treatment: L-DOPA can decrease blood pressure and aggravate orthostatic hypotension as a result of a negative inotropic effect on the heart. This unwanted side effect limits the therapeutic use of L-DOPA in geriatric patients with PD and can contribute to the number of hospital admissions. Therefore, it is essential to define the cardiac features related to PD for the monitorization of the heart condition in parkinsonian individuals. This information can allow the application of intervention strategies to improve the course of the disease and the proposition of new alternatives for its treatment to eliminate or reverse the motor and non-motor symptoms, especially in geriatric patients.


Assuntos
Coração/fisiopatologia , Doença de Parkinson/fisiopatologia , Animais , Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Sistema Nervoso Parassimpático/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia
7.
Sci Rep ; 11(1): 19871, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615910

RESUMO

The impact of age-associated disorders is increasing as the life expectancy of the population increments. Cardiovascular diseases and neurodegenerative disorders, such as Parkinson's disease, have the highest social and economic burden and increasing evidence show interrelations between them. Particularly, dysfunction of the cardiovascular nervous system is part of the dysautonomic symptoms of Parkinson's disease, although more studies are needed to elucidate the role of cardiac function on it. We analyzed the dopaminergic system in the nigrostriatal pathway of Parkinsonian and dyskinetic monkeys and the expression of some key proteins in the metabolism and synthesis of catecholamines in the heart: total and phosphorylated (phospho) tyrosine hydroxylase (TH), and membrane (MB) and soluble (S) isoforms of catechol-O-methyl transferase (COMT). The dopaminergic system was significantly depleted in all MPTP-intoxicated monkeys. MPTP- and MPTP + L-DOPA-treated animals also showed a decrease in total TH expression in both right (RV) and left ventricle (LV). We found a significant increase of phospho-TH in both groups (MPTP and MPTP + L-DOPA) in the LV, while this increase was only observed in MPTP-treated monkeys in the RV. MB-COMT analysis showed a very significant increase of this isoform in the LV of MPTP- and MPTP + L-DOPA-treated animals, with no significant differences in S-COMT levels. These data suggest that MB-COMT is the main isoform implicated in the cardiac noradrenergic changes observed after MPTP treatment, suggesting an increase in noradrenaline (NA) metabolism. Moreover, the increase of TH activity indicates that cardiac noradrenergic neurons still respond despite MPTP treatment.


Assuntos
Catecol O-Metiltransferase/metabolismo , Proteínas de Membrana/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Biomarcadores , Catecol O-Metiltransferase/genética , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ativação Enzimática , Imuno-Histoquímica , Macaca fascicularis , Masculino , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação , Tirosina 3-Mono-Oxigenase/genética
8.
Aging (Albany NY) ; 13(18): 22059-22077, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565717

RESUMO

World's population is exponentially aging as people reaching 100 years old has increased. The number of areas with the highest centennial population rates (Blue Zones), are significantly higher. Are there any determinant factors that favor this situation in Spain? The goal of this study was to determine the possible influence of sex, rurality and socioeconomic factors (Gross Domestic Product (GDP)) on the prevalence of the centennial population of the Spanish society. The Spanish register of inhabitants was published in 2017 by the National Statistics Institute. The analysis was carried out both by Autonomous Communities and by provinces in phases: a first descriptive analysis, followed by an inferential analysis, based on statistical tests (independent T- Student test, Pearson correlation and ANOVA). There were significant interactions between: i) sex and longevity (in favor of the female population); ii) female and rural housing and iii) female, GDP and urban areas. Feminization was proven in the longevity revolution, but, in general, GDP per Capita was not a significant survival factor on its own. This study was the first step of further analysis related to extreme longevity in Spain, which will include other dependent variables such as state of health and well-being as well as social factors.


Assuntos
Longevidade , População , População Rural/estatística & dados numéricos , Classe Social , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Produto Interno Bruto , Humanos , Lactente , Expectativa de Vida , Masculino , Pessoa de Meia-Idade , Espanha , População Urbana/estatística & dados numéricos , Adulto Jovem
9.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919373

RESUMO

The diurnal rodent Octodon degus (O. degus) is considered an attractive natural model for Alzheimer's disease and other human age-related features. However, it has not been explored so far if the O. degus could be used as a model to study Parkinson's disease. To test this idea, 10 adult male O. degus were divided into control group and MPTP-intoxicated animals. Motor condition and cognition were examined. Dopaminergic degeneration was studied in the ventral mesencephalon and in the striatum. Neuroinflammation was also evaluated in the ventral mesencephalon, in the striatum and in the dorsal hippocampus. MPTP animals showed significant alterations in motor activity and in visuospatial memory. Postmortem analysis revealed a significant decrease in the number of dopaminergic neurons in the ventral mesencephalon of MPTP animals, although no differences were found in their striatal terminals. We observed a significant increase in neuroinflammatory responses in the mesencephalon, in the striatum and in the hippocampus of MPTP-intoxicated animals. Additionally, changes in the subcellular expression of the calcium-binding protein S100ß were found in the astrocytes in the nigrostriatal pathway. These findings prove for the first time that O. degus are sensitive to MPTP intoxication and, therefore, is a suitable model for experimental Parkinsonism in the context of aging.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/patologia , Intoxicação por MPTP/patologia , Neurotoxinas/toxicidade , Transtornos Parkinsonianos/patologia , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Inflamação/etiologia , Intoxicação por MPTP/etiologia , Masculino , Neostriado/efeitos dos fármacos , Neostriado/patologia , Octodon , Transtornos Parkinsonianos/etiologia
10.
Ageing Res Rev ; 64: 101204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33152453

RESUMO

Integrating the multifactorial processes co-occurring in both physiological and pathological human conditions still remains one of the main challenges in translational investigation. Moreover, the impact of age-associated disorders has increased, which underlines the urgent need to find a feasible model that could help in the development of successful therapies. In this sense, the Octodon degus has been indicated as a 'natural' model in many biomedical areas, especially in ageing. This rodent shows complex social interactions and high sensitiveness to early-stressful events, which have been used to investigate neurodevelopmental processes. Interestingly, a high genetic similarity with some key proteins implicated in human diseases, such as apolipoprotein-E, ß-amyloid or insulin, has been demonstrated. On the other hand, the fact that this animal is diurnal has provided important contribution in the field of circadian biology. Concerning age-related diseases, this rodent could be a good model of multimorbidity since it naturally develops cognitive decline, neurodegenerative histopathological hallmarks, visual degeneration, type II diabetes, endocrinological and metabolic dysfunctions, neoplasias and kidneys alterations. In this review we have collected and summarized the studies performed on the Octodon degus through the years that support its use as a model for biomedical research, with a special focus on ageing.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Octodon , Envelhecimento , Animais , Modelos Animais de Doenças , Multimorbidade
11.
Front Aging Neurosci ; 12: 214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848701

RESUMO

Background: Parkinson's disease (PD) is described as an age-related neurodegenerative disorder. However, the vast majority of research is carried out using experimental models of young animals lacking the implications of the decline processes associated with aging. It has been suggested that several molecular pathways are involved in the perpetuation of the degeneration and the neuroinflammation in PD. Among others, mitogen-activated protein kinases (MAPKs) have been highly implicated in the development of PD, and regulating components of their activity are indicated as promising therapeutic targets. Methods: To further define how MAPKs expression is related to the glial response and neuronal cell death, Parkinsonism was induced under an acute regimen in old mice. Moreover, the sacrifice was carried out at different time points (4, 8, 24, and 48 h) after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) injections to describe the early dynamic changes over time produced by the intoxication. Results: The results revealed that neuronal death increases as glial response increases in the nigrostriatal pathway. It was observed that both processes increase from 4 h in the ventral mesencephalon (VM), and neuronal death becomes significant at 48 h. In the striatum, they were significantly increased from 48 h after the MPTP administration compared with that in the control mice. Moreover, the p-ERK levels decrease, while phospho-p38 expression increases specifically in the striatum at 48 h after MPTP intoxication. Conclusions: The importance of these data lies in the possibility of elucidating the underlying mechanisms of neurodegenerative processes under aging conditions to provide knowledge for the search of solutions that slow down the progression of PD.

12.
Mov Disord ; 35(4): 698-703, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872915

RESUMO

BACKGROUND: Autonomic dysfunction is a well-known dominant symptom in the advanced stages of Parkinson's disease. However, the role of cardiac sympathetic nerves still needs to be elucidated. OBJECTIVES: To evaluate cardiac sympathetic response in Parkinsonian and dyskinetic monkeys. METHODS: Adult male monkeys were divided into 1 of the following 3 groups: controls, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine+levodopa-treated animals. Noradrenaline, its metabolite normetanephrine, and phospho-Heat shock proten 27 (p-Hsp27) at serine 82 levels were analyzed in the left and right ventricles of the heart. Tyrosine hydroxylase immunohistochemistry was performed in the ventral mesencephalon. RESULTS: The results were the following: (1) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication significantly increased normetanephrine levels and decreased noradrenaline turnover in the right ventricle without changes in the left ventricle; however, (2) levodopa treatment decreased noradrenaline levels and enhanced the normetanephrine/noradrenaline ratio in parallel with a very significant increase of Hsp27 activity in both ventricles. CONCLUSIONS: Levodopa treatment could induce protective cardiac effects through the increased Hsp27 activity. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Discinesias/metabolismo , Proteínas de Choque Térmico HSP27 , Norepinefrina , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Levodopa , Macaca fascicularis , Masculino , Fosforilação , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Behav Brain Res ; 373: 112066, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31269420

RESUMO

Sleep deprivation (SD) has been reported to induce transient cognitive impairment in functional domains commonly affected in dementia, including memory. Indeed, sleep disturbance has been proposed as an early marker for Alzheimer's disease (AD). SD emulates many aging-related modifications, including important memory dysfunctions possibly caused by triggers of stress such as cortisol. Although exercise is widely assumed to be beneficial for overall health, only recently has the research community focused its attention on its possible effects on brain functions such as cognition. Octodon degus (O. degus) is a recent rodent model considered suitable for the study of neurodegenerative diseases, since it spontaneously develops several histopathological hallmarks observed in AD. We aimed to uncover the interaction between stress, exercise, age and transient memory impairments after SD insult. In this study, animals had free individual access to wheels to practice voluntary exercise. The Barnes Maze (BM) task was conducted with young and aged O. degus animals after combining voluntary exercise and either normal sleep or SD. Plasma cortisol levels were measured after each condition. SD impaired hippocampus-dependent memory in both young and old animals, while cortisol levels did not significantly differ between non-SD and SD animals. However, voluntary exercise for 45 days improved the cognitive impairment caused by SD compared with the control condition. Moreover, voluntary exercise decreased plasma cortisol levels in both conditions, independently of the age.


Assuntos
Transtornos da Memória/terapia , Memória/fisiologia , Esforço Físico/fisiologia , Fatores Etários , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hidrocortisona/análise , Hidrocortisona/sangue , Transtornos da Memória/fisiopatologia , Octodon , Privação do Sono/fisiopatologia
14.
Neurotox Res ; 35(4): 918-930, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30796691

RESUMO

The cause of progressive degeneration in Parkinson's disease is not clear, although, in the last years, different studies have suggested that both brain and peripheral inflammation could play a key role in the progression of this disorder. In our study, we aimed to analyze the effect of an acute inflammation confined to the colon on dopaminergic neuronal death and glial response in mice intoxicated with MPTP. The results obtained show a very significant decrease of dopaminergic neurons in the SNpc as well as a significant decrease of dopaminergic fibers in the striatum of the MPTP+DSS-treated group compared with the control animals. In addition, there was a significant exacerbation of microglial and astrocytes activation in MPTP+DSS animals compared with the control group. This data suggests that a specific gastrointestinal injury, which induces a systemic inflammatory response, is able to exacerbate cell death mechanisms of the remaining dopaminergic neurons and then contributes to the persistent progression of the disease. These results leave open new lines of research on the role of exclusive colonic inflammation and the progression of nigrostriatal dopaminergic degeneration.


Assuntos
Morte Celular , Colite/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transtornos Parkinsonianos/metabolismo , Parte Compacta da Substância Negra/metabolismo , Animais , Astrócitos/metabolismo , Colite/complicações , Colite/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Transtornos Parkinsonianos/complicações , Teste de Desempenho do Rota-Rod
15.
Front Cell Neurosci ; 12: 451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559650

RESUMO

The design of therapeutic strategies that focus on the repositioning of anti-inflammatory and antioxidant drugs are a great bet to slow down the progression of neurodegenerative disorders. Despite the fact that Parkinson's disease (PD) is an age-related pathology, almost all experimental studies are carried out in young animals. Here, we evaluated the possible neuroprotective effect of the combination of the antioxidant N-acetylcysteine (NAC) and the anti-inflammatory HA-1077 in aged 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice (C57BL/6 mice, 20 months old), whose individual treatment has been shown to have neuroprotective effects in this Parkinsonism model. Interestingly, NAC+HA-1077-based treatment produced a significant increase in dopaminergic neuronal death accompanied by an increase in microglial and astroglial activation in the Substantia Nigra pars compacta (SNpc) and striatum of old-Parkinsonian mice compared to their control group. The astroglial response was also explored by co-immunostaining for GFAP and S100b together with p-JNK and it was found to be particularly exacerbated in the MPTP+NAC+HA-1077 group. The unexpected toxic effects found in the combined use of NAC and HA-1077 in old-Parkinsonian mice highlight the importance of taking into account that in elderly Parkinsonian patients the combination of some drugs (most of them used for other different age-related alterations) can have side effects that may result in the exacerbation of the neurodegenerative process.

16.
J Neuroinflammation ; 15(1): 328, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477535

RESUMO

BACKGROUND: Neuroprotective strategies are becoming relevant to slow down dopaminergic cell death and inflammatory processes related to the progressive neurodegeneration in Parkinson's disease (PD). Interestingly, among others, physical activity (PA) or anti-oxidant agents (such as N-acetyl-L-cysteine, NAC) are common therapeutic strategies. Therefore, this study aims to analyze if there is a synergistic effect of physical activity along with NAC treatment on dopaminergic degeneration and neuroinflammatory response in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism model after subchronic intoxication. METHODS: To ascertain this possibility, 48 8-week-old male mice (C57BL/6 strain) were used. Twenty four of them were placed individually in cages where voluntary physical activity was automatically monitored during 30 days and were divided into groups: (i) control; (ii) NAC; (iii) MPTP, and (iv) MPTP+NAC. The other 24 mice were divided into the same four groups but without physical activity. RESULTS: The data collected during the treatment period showed that there was an overall increase in the total running distance in all groups under physical activity, including Parkinsonian animals. However, the monitoring data per day showed that the activity routine by MPTP and MPTP+NAC groups was disrupted by alterations in the circardian rhythm because of MPTP intoxication. Results from post-mortem studies in the substantia nigra pars compacta (SNpc) showed significant decrease in the number of TH+ cells in all MPTP groups. Moreover, TH+ expression in the striatum was significantly decreased in all MPTP groups. Thus, PA + NAC treatment do not protect dopaminergic neurons against a subchronic intoxication of MPTP. Regarding glial response, the results obtained from microglial analysis do not show significant increase in the number of Iba-1+ cell in MPTP+NAC and MPTP+PA + NAC. In the striatum, a significant decrease is observed only in the MPTP+NAC group compared with that of the MPTP group. The microglial results are reinforced by those obtained from the analysis of astroglial response, in which a decrease in the expression of GFAP+ cells are observed in MPTP+NAC and MPTP+PA + NAC compared with MPTP groups both in the SNpc and in the striatum. Finally, from the study of the astroglial response by the co-localization of GFAP/S100b, we described some expression patterns observed based on the severity of the damage produced by the MPTP intoxication in the different treated groups. CONCLUSIONS: These results suggest that the combination of physical activity with an anti-oxidant agent does not have a synergistic neuroprotective effect in the nigrostriatal pathway. Our results show a potential positive effect, only due to NAC treatment, on the neuroinflammatory response after subchronic MPTP intoxication. Thus, physical activity is not essential, under these conditions. However, we believe that physical activity, used for therapeutic purposes, has a beneficial long-term effect. In this line, these results open the door to design longer studies to demonstrate its promising effect as neuroprotective strategy.


Assuntos
Acetilcisteína/uso terapêutico , Encefalite/reabilitação , Neuroprostanos/uso terapêutico , Transtornos Parkinsonianos/complicações , Condicionamento Físico Animal/métodos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Encefalite/etiologia , Encefalite/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Transtornos Parkinsonianos/induzido quimicamente , Condicionamento Físico Animal/fisiologia , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Prog Neurobiol ; 155: 76-95, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27072742

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Neuroinflammation leads to microglia activation and release of a large number of proinflammatory mediators. The kynurenine pathway (KP) of tryptophan catabolism is one of the major regulators of the immune response and is also likely to be implicated in the inflammatory and neurotoxic events in Parkinsonism. Several neuroactive compounds are produced through the KP that can be either a neurotoxic, neuroprotective or immunomodulator. Among these metabolites kynurenic acid (KYNA), produced by astrocytes, is considered as neuroprotective whereas quinolinic acid (QUIN), released by activated microglia, can activate the N-methyl-d-aspartate (NMDA) receptor-signalling pathway, leading to excitotoxicity and amplify the inflammatory response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that some of the KP metabolites could be used as prognostic biomarkers and that pharmacological modulators of the KP enzymes could represent a new therapeutic strategy for PD.


Assuntos
Cinurenina/metabolismo , Doença de Parkinson/metabolismo , Animais , Humanos , Cinurenina/imunologia , Doença de Parkinson/imunologia
18.
Front Cell Neurosci ; 9: 126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954153

RESUMO

The retina is sensitive to age-dependent degeneration. To find suitable animal models to understand and map this process has particular importance. The degu (Octodon degus) is a diurnal rodent with dichromatic color vision. Its retinal structure is similar to that in humans in many respects, therefore, it is well suited to study retinal aging. Histological, cell type-specific and ultrastructural alterations were examined in 6-, 12- and 36-months old degus. The characteristic layers of the retina were present at all ages, but slightly loosened tissue structure could be observed in 36-month-old animals both at light and electron microscopic levels. Elevated Glial fibrillary acidic protein (GFAP) expression was observed in Müller glial cells in aging retinas. The number of rod bipolar cells and the ganglion cells was reduced in the aging specimens, while that of cone bipolar cells remained unchanged. Other age-related differences were detected at ultrastructural level: alteration of the retinal pigment epithelium and degenerated photoreceptor cells were evident. Ribbon synapses were sparse and often differed in morphology from those in the young animals. These results support our hypothesis that (i) the rod pathway seems to be more sensitive than the cone pathway to age-related cell loss; (ii) structural changes in the basement membrane of pigment epithelial cells can be one of the early signs of degenerative processes; (iii) the loss of synaptic proteins especially from those of the ribbon synapses are characteristic; and (iv) the degu retina may be a suitable model for studying retinal aging.

19.
Neuropharmacology ; 85: 206-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24878242

RESUMO

Memory loss is one of the key features of cognitive impairment in either aging, Mild Cognitive Impairment (MCI) or dementia. Pharmacological treatments for memory loss are today focused on addressing symptomatology. One of these approved compounds is memantine, a partial NMDA receptor antagonist that has proved its beneficial effects in cognition. The Octodon degus (O. degus) has been recently proposed as a potential model relevant for neurodegenerative diseases. However, there are no previous studies investigating the effect of pharmacological treatments for age-related cognitive impairment in this rodent. In this work we aimed to evaluate the effect of memantine on sleep deprivation (SD)-induced memory impairment in young and old O. degus. Young and old animals were trained in different behavioral paradigms validated for memory evaluation, and randomly assigned to a control (CTL, n=14) or an SD (n=14) condition, and treated with vehicle or memantine (10-mg/Kg i.p.) before the SD started. We demonstrate that SD impairs memory in both young and old animals, although the effect in the old group was significantly more severe (P<0.05). Memantine pretreatment was able to prevent the cognitive impairment caused by SD in both age groups, while it had no negative effect on CTL animals. The positive effect of memantine in counteracting the negative effect of SD on the retrieval process even in the aged O. degus further supports the translational potential of both the challenge and the species, and will enable a better understanding of the behavioral features of memantine effects, especially related with reference and working memories.


Assuntos
Envelhecimento/efeitos dos fármacos , Memantina/farmacologia , Transtornos da Memória/prevenção & controle , Memória de Curto Prazo/efeitos dos fármacos , Nootrópicos/farmacologia , Privação do Sono/complicações , Envelhecimento/fisiologia , Animais , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memantina/sangue , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Memória de Curto Prazo/fisiologia , Testes Neuropsicológicos , Nootrópicos/sangue , Octodon , Distribuição Aleatória , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Privação do Sono/fisiopatologia
20.
PLoS One ; 8(9): e74439, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040246

RESUMO

Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ± 1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson's diseased brain and neurodegenerative diseases of the retina proper.


Assuntos
Proteínas do Olho/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Transtornos Parkinsonianos/metabolismo , Retina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Transporte de Elétrons , Eletroforese em Gel Bidimensional , Metabolismo Energético , Proteínas do Olho/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Transdução de Sinal Luminoso , Macaca fascicularis , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/genética , Degeneração Neural/patologia , Neurônios/patologia , Estresse Oxidativo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Proteômica , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...