Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Exp Cell Res ; 442(1): 114211, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39147261

RESUMO

Blood vessel growth and osteogenesis in the skeletal system are coupled; however, fundamental aspects of vascular function in osteoblast-to-osteocyte transition remain unclear. Our study demonstrates that vascular smooth muscle cells (VSMCs), but not endothelial cells, are sufficient to drive bone marrow mesenchymal stromal cell-derived osteoblast-to-osteocyte transition via ß-catenin signaling and exosome-mediated communication. We found that VSMC-derived exosomes are loaded with transcripts encoding proteins associated with the osteocyte phenotype and members of the WNT/ß-catenin signaling pathway. In contrast, endothelial cell-derived exosomes facilitated mature osteoblast differentiation by reprogramming the TGFB1 gene family and osteogenic transcription factors osterix (SP7) and RUNX2. Notably, VSMCs express significant levels of tetraspanins (CD9, CD63, and CD81) and drive the intracellular trafficking of exosomes with a lower membrane zeta potential than those from other cells. Additionally, the high ATP content within these exosomes supports mineralization mechanisms, as ATP is a substrate for alkaline phosphatase. Osteocyte function was further validated by RNA sequencing, revealing activity in genes related to intermittent mineralization and sonic hedgehog signaling, alongside a significant increase in TNFSF11 levels. Our findings unveil a novel role of VSMCs in promoting osteoblast-to-osteocyte transition, thus offering new insights into bone biology and homeostasis, as well as in bone-related diseases. Clinically, these insights could pave the way for innovative therapeutic strategies targeting VSMC-derived exosome pathways to treat bone-related disorders such as osteoporosis. By manipulating these signaling pathways, it may be possible to enhance bone regeneration and improve skeletal health in patients with compromised bone structure and function.


Assuntos
Exossomos , Músculo Liso Vascular , Osteoblastos , Osteócitos , Osteogênese , beta Catenina , Osteoblastos/metabolismo , Osteoblastos/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Exossomos/metabolismo , Animais , beta Catenina/metabolismo , beta Catenina/genética , Osteócitos/metabolismo , Osteócitos/citologia , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Miócitos de Músculo Liso/metabolismo , Diferenciação Celular , Humanos , Via de Sinalização Wnt , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Transdução de Sinais , Camundongos Endogâmicos C57BL
2.
Food Chem ; 342: 128361, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33077277

RESUMO

Shrimp trawling is an important socio-economic activity; however, the bycatch can be problematic to the environment. Thus, the present study investigated potential uses of the bycatch to generate value-added products. The biological activity of the protein hydrolysates obtained from the two most abundant fish species (Micropogonias furnieri and Paralonchurus brasiliensis) was evaluated. Muscle and skin samples of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity against peroxyl radicals, DPPH, and sulfhydryl groups were analyzed. Cell viability, Western Blotting, Zymogram, and Real-time PCR analyses were performed. The results showed that the hydrolysates have antioxidant activity and no effect on cell viability at doses lower than 16 mg/mL. In addition, they can modulate extracellular remodelling and intracellular pathways related to cell adhesion. Thus, the hydrolysis of the fish bycatch allows the release of bioactive peptides with potential use in the food industry.


Assuntos
Antioxidantes/farmacologia , Pesqueiros , Peixes , Hidrolisados de Proteína/farmacologia , Animais , Antioxidantes/metabolismo , Peixes/metabolismo , Peptídeos/farmacologia , Hidrolisados de Proteína/metabolismo , Alimentos Marinhos , Subtilisinas/metabolismo
3.
Am J Gastroenterol ; 115(12): 2103-2108, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33105193

RESUMO

INTRODUCTION: Imaging-based surveillance programs fail to detect pancreatic ductal adenocarcinoma at a curable stage, creating an urgent need for diagnostic biomarkers. METHODS: Secretin-stimulated pancreatic juice (PJ) was collected from the duodenal lumen during endoscopic ultrasound. The yield of biomarkers and organoids was compared for 2 collection techniques (endoscope suction channel vs catheter-based) and 3 periods (0-4 vs 4-8 vs 8-15 minutes). RESULTS: Collection through the endoscope suction channel was superior to collection with a catheter. Collection beyond 8 minutes reduced biomarker yield. PJ-derived organoid culture was feasible. DISCUSSION: The optimal protocol for secretin-stimulated PJ collection is through the endoscope suction channel for 8 minutes allowing biomarker detection and organoid culture.


Assuntos
Biomarcadores/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Suco Pancreático/metabolismo , Neoplasias Pancreáticas/diagnóstico , Carcinoma Ductal Pancreático/metabolismo , Detecção Precoce de Câncer/métodos , Endossonografia , Humanos , Neoplasias Pancreáticas/metabolismo , Estudos Prospectivos
4.
PLoS One ; 13(4): e0194847, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641603

RESUMO

Human adipose tissue-derived stem cells (hASCs) have been subjected to extensive investigation because of their self-renewal properties and potential to restore damaged tissues. In the literature, there are several protocols for differentiating hASCs into osteoblasts, but there is no report on the control of cell viability during this process. In this study, we used osteoblasts derived from hASCs of patients undergoing abdominoplasty. The cells were observed at the beginning and end of bone matrix formation, and the expression of proteins involved in this process, including alkaline phosphatase and osteocalcin, was assessed. RANKL, Osterix, Runx2, Collagen3A1, Osteopontin and BSP expression levels were analyzed using real-time PCR, in addition to a quantitative assessment of protein levels of the markers CD45, CD105, STRO-1, and Nanog, using immunofluorescence. Rhodamine (Rho123), cytochrome-c, caspase-3, P-27, cyclin D1, and autophagy cell markers were analyzed by flow cytometry to demonstrate potential cellular activity and the absence of apoptotic and tumor cell processes before and after cell differentiation. The formation of bone matrix, along with calcium nodules, was observed after 16 days of osteoinduction. The gene expression levels of RANKL, Osterix, Runx2, Collagen3A1, Osteopontin, BSP and alkaline phosphatase activity were also elevated after 16 days of osteoinduction, whereas the level of osteocalcin was higher after 21 days of osteoinduction. Our data also showed that the cells had a high mitochondrial membrane potential and a low expression of apoptotic and tumor markers, both before and after differentiation. Cells were viable after the different phases of differentiation. This proposed methodology, using markers to evaluate cell viability, is therefore successful in assessing different phases of stem cell isolation and differentiation.


Assuntos
Tecido Adiposo/citologia , Sobrevivência Celular , Osteoblastos/citologia , Células-Tronco/citologia , Fosfatase Alcalina/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Colágeno Tipo III/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial , Microscopia de Fluorescência , Modelos Biológicos , Osteoblastos/metabolismo , Osteopontina/metabolismo , Ligante RANK/metabolismo , Vimentina/metabolismo
5.
Colloids Surf B Biointerfaces ; 163: 321-328, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329077

RESUMO

Over the last several years, we have focused on the importance of intracellular signaling pathways in dynamically governing the biointerface between pre-osteoblast and surface of biomaterial. Thus, this study investigates the molecular hallmarks involved in the pre-osteoblast relationship with different topography considering Machined (Mc), Dual Acid-Etching (DAE), and nano hydroxyapatite-blasted (nHA) groups. There was substantial differences in topography of titanium surface, considering Atomic Force Microscopy and water contact angle (Mc = 81.41 ±â€¯0.01; DAE = 97.18 ±â€¯0.01; nHA = 40.95 ±â€¯0.02). Later, to investigate their topography differences on biological responses, pre-osteoblast was seeded on the different surfaces and biological samples were collected after 24 h (to consider adhesion signaling) and 10 days (to consider differentiation signaling). Preliminary results evidenced significant differences in morphological changes of pre-osteoblasts mainly resulting from the interaction with the DAE and nHA, distinguishing cellular adaptation. These results pushed us to analyze activation of specific genes by exploring qPCR technology. In sequence, we showed that Src performs crucial roles during cell adhesion and later differentiation of the pre-osteoblast in relationship with titanium-based biomaterials, as our results confirmed strong feedback of the Src activity on the integrin-based pathway, because integrin-ß1 (∼5-fold changes), FAK (∼12-fold changes), and Src (∼3.5-fold changes) were significantly up-expressed when Src was chemically inhibited by PP1 (5 µM). Moreover, ECM-related genes were rigorously reprogrammed in response to the different surfaces, resulting on Matrix Metalloproteinase (MMP) activities concomitant to a significant decrease of MMP inhibitors. In parallel, we showed PP1-based Src inhibition promotes a significant increase of MMP activity. Taking all our results into account, we showed for the first time nano hydroxyapatite-blasted titanium surface creates a biointerface able to govern Src-dependent osteoblast metabolism as pre-requisite to ECM remodeling.


Assuntos
Durapatita/química , Matriz Extracelular/metabolismo , Nanopartículas/química , Osteoblastos/metabolismo , Titânio/farmacologia , Quinases da Família src/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular , Matriz Extracelular/efeitos dos fármacos , Genes Supressores , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Fenótipo , Propriedades de Superfície
6.
J Biomed Mater Res A ; 106(3): 839-849, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28941043

RESUMO

Significant health concerns have been raised by the high levels of Cr and Co ions into whole blood as resulted of corrosion process released from biomedical implants, but very little is known about their biological behavior in governing cell metabolism. Thus, we prompted to address this issue by exploring the effects of CoCr enriched medium on both fibroblast and preosteoblast (pre-Ob) cells. First, we showed there is a significant difference in Co and Cr releasing dependent on engineered surface, it being even more released in dual acid-etching treating surface (named w/DAE) than the machined surfaces (named wo/DAE). Thereafter, we showed CoCr affects pre-osteoblast and fibroblast metabolism by dynamically modulating integrin-based downstream signaling (FAK, Src, Rac1, and Cofilin). Specifically on this matter, we have shown there is dynamic ß1-integrin gene activation up 24 h in both preosteoblast and fibroblast. Our analysis showed also that both pre-Ob and fibroblast are important resource of proinflammatory cytokines when responding to CoCr enriched medium. In addition, survival-related signaling pathway was also affected interfering on survival and proliferating signal, mainly affecting CDK2, mapk-Erk and mapk-p38 phosphorylations, while AKT/PKB-related gene remained active. In addition, during cell adhesion PP2A (an important Ser/Thr phosphatase) was inactive in both cell lineages and it seems be a CoCr's molecular fingerprint, regulating specific metabolic pathways involved with cytoskeleton rearrangement. Altogether, our results showed for the first time CoCr affects cellular performance in vitro by modulating integrin activation-based downstream signaling and requiring a reprograming of inflammatory genes activations in vitro. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 839-849, 2018.


Assuntos
Cromo/farmacologia , Cobalto/farmacologia , Inflamação/genética , Integrinas/metabolismo , Transdução de Sinais , Fatores de Despolimerização de Actina/metabolismo , Ligas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/química , Citocinas/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Camundongos , Células NIH 3T3 , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fosforilação/efeitos dos fármacos
7.
PLoS One, v. 13, n. 4, e0194847, abr. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2458

RESUMO

Human adipose tissue-derived stem cells (hASCs) have been subjected to extensive investigation because of their self-renewal properties and potential to restore damaged tissues. In the literature, there are several protocols for differentiating hASCs into osteoblasts, but there is no report on the control of cell viability during this process. In this study, we used osteoblasts derived from hASCs of patients undergoing abdominoplasty. The cells were observed at the beginning and end of bone matrix formation, and the expression of proteins involved in this process, including alkaline phosphatase and osteocalcin, was assessed. RANKL, Osterix, Runx2, Collagen3A1, Osteopontin and BSP expression levels were analyzed using real-time PCR, in addition to a quantitative assessment of protein levels of the markers CD45, CD105, STRO-1, and Nanog, using immunofluorescence. Rhodamine (Rho123), cytochrome-c, caspase-3, P-27, cyclin D1, and autophagy cell markers were analyzed by flow cytometry to demonstrate potential cellular activity and the absence of apoptotic and tumor cell processes before and after cell differentiation. The formation of bone matrix, along with calcium nodules, was observed after 16 days of osteoinduction. The gene expression levels of RANKL, Osterix, Runx2, Collagen3A1, Osteopontin, BSP and alkaline phosphatase activity were also elevated after 16 days of osteoinduction, whereas the level of osteocalcin was higher after 21 days of osteoinduction. Our data also showed that the cells had a high mitochondrial membrane potential and a low expression of apoptotic and tumor markers, both before and after differentiation. Cells were viable after the different phases of differentiation. This proposed methodology, using markers to evaluate cell viability, is therefore successful in assessing different phases of stem cell isolation and differentiation.

8.
PLoS One ; 13(4): e0194847, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15025

RESUMO

Human adipose tissue-derived stem cells (hASCs) have been subjected to extensive investigation because of their self-renewal properties and potential to restore damaged tissues. In the literature, there are several protocols for differentiating hASCs into osteoblasts, but there is no report on the control of cell viability during this process. In this study, we used osteoblasts derived from hASCs of patients undergoing abdominoplasty. The cells were observed at the beginning and end of bone matrix formation, and the expression of proteins involved in this process, including alkaline phosphatase and osteocalcin, was assessed. RANKL, Osterix, Runx2, Collagen3A1, Osteopontin and BSP expression levels were analyzed using real-time PCR, in addition to a quantitative assessment of protein levels of the markers CD45, CD105, STRO-1, and Nanog, using immunofluorescence. Rhodamine (Rho123), cytochrome-c, caspase-3, P-27, cyclin D1, and autophagy cell markers were analyzed by flow cytometry to demonstrate potential cellular activity and the absence of apoptotic and tumor cell processes before and after cell differentiation. The formation of bone matrix, along with calcium nodules, was observed after 16 days of osteoinduction. The gene expression levels of RANKL, Osterix, Runx2, Collagen3A1, Osteopontin, BSP and alkaline phosphatase activity were also elevated after 16 days of osteoinduction, whereas the level of osteocalcin was higher after 21 days of osteoinduction. Our data also showed that the cells had a high mitochondrial membrane potential and a low expression of apoptotic and tumor markers, both before and after differentiation. Cells were viable after the different phases of differentiation. This proposed methodology, using markers to evaluate cell viability, is therefore successful in assessing different phases of stem cell isolation and differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA