Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Brain Behav ; 13(7): 663-74, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975275

RESUMO

Cognitive abilities vary among people. About 40-50% of this variability is due to general intelligence (g), which reflects the positive correlation among individuals' scores on diverse cognitive ability tests. g is positively correlated with many life outcomes, such as education, occupational status and health, motivating the investigation of its underlying biology. In psychometric research, a distinction is made between general fluid intelligence (gF) - the ability to reason in novel situations - and general crystallized intelligence (gC) - the ability to apply acquired knowledge. This distinction is supported by developmental and cognitive neuroscience studies. Classical epidemiological studies and recent genome-wide association studies (GWASs) have established that these cognitive traits have a large genetic component. However, no robust genetic associations have been published thus far due largely to the known polygenic nature of these traits and insufficient sample sizes. Here, using two GWAS datasets, in which the polygenicity of gF and gC traits was previously confirmed, a gene- and pathway-based approach was undertaken with the aim of characterizing and differentiating their genetic architecture. Pathway analysis, using genes selected on the basis of relaxed criteria, revealed notable differences between these two traits. gF appeared to be characterized by genes affecting the quantity and quality of neurons and therefore neuronal efficiency, whereas long-term depression (LTD) seemed to underlie gC. Thus, this study supports the gF-gC distinction at the genetic level and identifies functional annotations and pathways worthy of further investigation.


Assuntos
Cognição , Genoma Humano , Inteligência/genética , Redes e Vias Metabólicas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Depressão Sináptica de Longo Prazo/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
2.
Transl Psychiatry ; 4: e341, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24399044

RESUMO

Differences in general cognitive ability (intelligence) account for approximately half of the variation in any large battery of cognitive tests and are predictive of important life events including health. Genome-wide analyses of common single-nucleotide polymorphisms indicate that they jointly tag between a quarter and a half of the variance in intelligence. However, no single polymorphism has been reliably associated with variation in intelligence. It remains possible that these many small effects might be aggregated in networks of functionally linked genes. Here, we tested a network of 1461 genes in the postsynaptic density and associated complexes for an enriched association with intelligence. These were ascertained in 3511 individuals (the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium) phenotyped for general cognitive ability, fluid cognitive ability, crystallised cognitive ability, memory and speed of processing. By analysing the results of a genome wide association study (GWAS) using Gene Set Enrichment Analysis, a significant enrichment was found for fluid cognitive ability for the proteins found in the complexes of N-methyl-D-aspartate receptor complex; P=0.002. Replication was sought in two additional cohorts (N=670 and 2062). A meta-analytic P-value of 0.003 was found when these were combined with the CAGES consortium. The results suggest that genetic variation in the macromolecular machines formed by membrane-associated guanylate kinase (MAGUK) scaffold proteins and their interaction partners contributes to variation in intelligence.


Assuntos
Cognição/fisiologia , Estudo de Associação Genômica Ampla , Guanilato Quinases/genética , Inteligência/genética , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/genética , Idoso , Idoso de 80 Anos ou mais , Cognição/classificação , Estudos de Coortes , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteômica
3.
Genes Immun ; 14(4): 234-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23552400

RESUMO

The genetic background of primary Sjögren's syndrome (pSS) is partly shared with systemic lupus erythematosus (SLE). Immunoglobulin G Fc receptors are important for clearance of immune complexes. Fcγ receptor variants and gene deletion have been found to confer SLE risk. In this study, four Fcγ receptor single-nucleotide polymorphisms (SNPs) and one copy number variation (CNV) were studied. Swedish and Norwegian pSS patients (N=527) and controls (N=528) were genotyped for the Fcγ receptor gene variant FCGR2A H131R (rs1801274) by the Illumina GoldenGate assay. FCGR3A F158V (rs396991) was analysed in 488 patients and 485 controls, FCGR3B rs447536 was analysed in 471 patients and 467 controls, and FCGR3B rs448740 was analysed in 478 cases and 455 controls, using TaqMan SNP genotyping assays. FCGR3B CNV was analysed in 124 patients and 139 controls using a TaqMan copy number assay. None of the SNPs showed any association with pSS. Also, no FCGR3B CNV association was detected. The lack of association of pSS with Fcγ receptor gene variants indicates that defective immune complex clearance may not be as important in pSS pathogenesis as in SLE, and may point to important differences between SLE and pSS.


Assuntos
Receptores de IgG/genética , Síndrome de Sjogren/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Deleção de Genes , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Noruega , Polimorfismo de Nucleotídeo Único , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...