Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 243: 120423, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541130

RESUMO

Lakes and reservoirs are important sources/sinks of atmospheric CO2. Primary production and respiration transforming inorganic to organic carbon and vice versa alter CO2 concentrations in the surface waters and thus affect CO2 emissions. Here we investigate the link between net-production (NEP) and CO2 concentrations and emissions at high temporal resolution over more than two months in a German pump storage reservoir. Continuous in-situ pH measurements in combination with few alkalinity measurements provided concentrations of CO2 and dissolved inorganic carbon (DIC) at high temporal resolution over more than 75 days. Time series of metabolic rates of carbon were determined with an open-water diel pH technique, which utilizes the diel changes in DIC obtained from the observed diel changes in pH and data on alkalinity. During the measuring period, average NEP was positive and CO2 concentrations were typically substantially under-saturated. On average, the reservoir acted as a sink for CO2, whereby CO2 uptake was 39% larger in the evening than in the morning. Only few consecutive days with negative NEP were sufficient to turn the reservoir temporally into a source of CO2. Therefore, the average CO2 uptake determined from continuous data can be 80% larger to 30% smaller than estimates of average uptake based on bi-weekly data. Daily mean NEP explained only 9% and 4% of the variance of daily mean DIC and CO2. Note that NEP is proportional to the time derivative of DIC and therefore not expected to correlate well with DIC in general. Because CO2 changes nonlinearly with DIC, NEP explains less variance of CO2 than of DIC. Numerical experiments confirmed the arguments above and revealed that at positive average NEP the total CO2 uptake over several weeks is not well predicted by average NEP but depends on the detailed temporal pattern of NEP. However, if average NEP is negative, average NEP may be a good predictor of total CO2 emissions. Similar conclusions apply for high and low alkalinity waters, but uptake rates and temporal variability of CO2 emissions are smaller in high than in low alkalinity waters. Assessment of the link between NEP and CO2 emissions requires differentiation between lakes with different alkalinity and, because of the non-linear relationship between NEP and CO2, strongly benefits from data with high temporal resolution especially during time-periods with positive net-production.


Assuntos
Dióxido de Carbono , Ecossistema , Dióxido de Carbono/metabolismo , Fatores de Tempo , Carbono , Concentração de Íons de Hidrogênio
3.
Water Res ; 165: 114990, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445308

RESUMO

Metabolic transformations have a major impact on the development of primary producers in aquatic systems and thus affect the dynamics of the entire aquatic food web. Furthermore, metabolic transformations contribute to the carbon budget and thereby influence CO2 emissions from aquatic systems. Several techniques have been developed that aim at an easy assessment of metabolic rates over long time periods or in many systems. The 18/16O technique, which utilizes the isotopic fractionation between 18O and 16O isotopes due to metabolic transformations, is receiving increasing popularity in studies comparing the metabolism in many different lakes and served as basis for the conclusions that production increases with increasing atmospheric CO2 and that surprisingly little terrestrial carbon is recycled in lakes of the arid circumpolar landscape. However, we demonstrate here that the steady state assumptions underlying the 18/16O technique cause large uncertainties in the estimated metabolic rates. This conclusion is based on a sensitivity analysis using a numerical model of dissolved oxygen, DO, and of dissolved 18O, 18ODO, but is also confirmed by published metabolic rates estimated from the 18/16O and the diel O2 techniques. Metabolic rates obtained from the 18/16O technique appear unsuited for correlation analyses between lakes but may provide reasonable estimates in systems with low and long-term stable production. In addition we illustrate that the combination of few 18O measurements with the diel O2 technique and an inverse fitting procedure can improve estimates of metabolic rates and in particular of respiration rates.


Assuntos
Ecossistema , Lagos , Carbono , Isótopos , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...