Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 123(7): 814-823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38409780

RESUMO

The classical "one sequence, one structure, one function" paradigm has shaped much of our intuition of how proteins work inside the cell. Partially due to the insight provided by bulk biochemical assays, individual biomolecules are often assumed to behave as identical entities, and their characterization relies on ensemble averages that flatten any conformational diversity into a unique phenotype. While the emergence of single-molecule techniques opened the gates to interrogating individual molecules, technical shortcomings typically limit the duration of these measurements, which precludes a complete characterization of an individual protein and, hence, capturing the heterogeneity among molecular populations. Here, we introduce an ultrastable magnetic tweezers design, which enables us to measure the folding dynamics of a single protein during several uninterrupted days with high temporal and spatial resolution. Thanks to this instrumental development, we fully characterize the nanomechanics of two proteins with a very distinct force response, the talin R3IVVI domain and protein L. Days-long recordings on the same protein individual accumulate thousands of folding transitions with submicrosecond resolution, allowing us to reconstruct their free energy landscapes and describe how they evolve with force. By mapping the nanomechanical identity of many different protein individuals, we directly capture their molecular diversity as a quantifiable dispersion on their force response and folding kinetics. By significantly expanding the measurable timescales, our instrumental development offers a tool for profiling individual molecules, opening the gates to directly characterizing biomolecular heterogeneity.


Assuntos
Dobramento de Proteína , Proteínas , Humanos , Proteínas/química , Fenômenos Mecânicos , Cinética , Conformação Molecular
2.
Nat Chem ; 13(2): 172-181, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33257887

RESUMO

Gram-positive bacteria colonize mucosal tissues, withstanding large mechanical perturbations such as coughing, which generate shear forces that exceed the ability of non-covalent bonds to remain attached. To overcome these challenges, the pathogen Streptococcus pyogenes utilizes the protein Cpa, a pilus tip-end adhesin equipped with a Cys-Gln thioester bond. The reactivity of this bond towards host surface ligands enables covalent anchoring; however, colonization also requires cell migration and spreading over surfaces. The molecular mechanisms underlying these seemingly incompatible requirements remain unknown. Here we demonstrate a magnetic tweezers force spectroscopy assay that resolves the dynamics of the Cpa thioester bond under force. When folded at forces <6 pN, the Cpa thioester bond reacts reversibly with amine ligands, which are common in inflammation sites; however, mechanical unfolding and exposure to forces >6 pN block thioester reformation. We hypothesize that this folding-coupled reactivity switch (termed a smart covalent bond) could allow the adhesin to undergo binding and unbinding to surface ligands under low force and remain covalently attached under mechanical stress.


Assuntos
Adesinas Bacterianas/química , Fímbrias Bacterianas/química , Adesinas Bacterianas/análise , Adesinas Bacterianas/metabolismo , Fímbrias Bacterianas/metabolismo , Ligação Proteica , Dobramento de Proteína , Streptococcus pyogenes/química , Streptococcus pyogenes/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(35): 21346-21353, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817549

RESUMO

Cells continually sample their mechanical environment using exquisite force sensors such as talin, whose folding status triggers mechanotransduction pathways by recruiting binding partners. Mechanical signals in biology change quickly over time and are often embedded in noise; however, the mechanics of force-sensing proteins have only been tested using simple force protocols, such as constant or ramped forces. Here, using our magnetic tape head tweezers design, we measure the folding dynamics of single talin proteins in response to external mechanical noise and cyclic force perturbations. Our experiments demonstrate that talin filters out external mechanical noise but detects periodic force signals over a finely tuned frequency range. Hence, talin operates as a mechanical band-pass filter, able to read and interpret frequency-dependent mechanical information through its folding dynamics. We describe our observations in the context of stochastic resonance, which we propose as a mechanism by which mechanosensing proteins could respond accurately to force signals in the naturally noisy biological environment.


Assuntos
Mecanotransdução Celular , Talina/fisiologia , Domínios Proteicos , Dobramento de Proteína , Imagem Individual de Molécula
4.
Sci Adv ; 6(21): eaaz4707, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494739

RESUMO

Vinculin binds unfolded talin domains in focal adhesions, which recruits actin filaments to reinforce the mechanical coupling of this organelle. However, it remains unknown how this interaction is regulated and its impact on the force transmission properties of this mechanotransduction pathway. Here, we use magnetic tweezers to measure the interaction between vinculin head and the talin R3 domain under physiological forces. For the first time, we resolve individual binding events as a short contraction of the unfolded talin polypeptide caused by the reformation of the vinculin-binding site helices, which dictates a biphasic mechanism that regulates this interaction. Force favors vinculin binding by unfolding talin and exposing the vinculin-binding sites; however, the coil-to-helix contraction introduces an energy penalty that increases with force, defining an optimal binding regime. This mechanism implies that the talin-vinculin-actin association could operate as a negative feedback mechanism to stabilize force on focal adhesions.

5.
Nat Commun ; 11(1): 2060, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345978

RESUMO

Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.


Assuntos
Conectina/metabolismo , Endopeptidases/genética , Especificidade de Órgãos , Animais , Fenômenos Biomecânicos , Conectina/química , Feminino , Proteínas Imobilizadas/metabolismo , Magnetismo , Camundongos , Músculos/metabolismo , Músculos/ultraestrutura , Pinças Ópticas , Fenótipo , Dobramento de Proteína , Análise Espectral
6.
Cell Rep ; 27(6): 1836-1847.e4, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067467

RESUMO

The delivery of mechanical power, a crucial component of animal motion, is constrained by the universal compromise between the force and the velocity of its constituent molecular systems. While the mechanisms of force generation have been studied at the single molecular motor level, there is little understanding of the magnitude of power that can be generated by folding proteins. Here, we use single-molecule force spectroscopy techniques to measure the force-velocity relation of folding titin domains that contain single internal disulfide bonds, a common feature throughout the titin I-band. We find that formation of the disulfide regulates the peak power output of protein folding in an all-or-none manner, providing at 6.0 pN, for example, a boost from 0 to 6,000 zW upon oxidation. This mechanism of power generation from protein folding is of great importance for muscle, where titin domains may unfold and refold with each extension and contraction of the sarcomere.


Assuntos
Conectina/química , Conectina/metabolismo , Dobramento de Proteína , Fenômenos Biomecânicos , Dissulfetos/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Oxirredução , Oxirredutases/metabolismo , Peptídeos/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios Proteicos
7.
Proc Natl Acad Sci U S A ; 116(16): 7873-7878, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30936303

RESUMO

Magnetic tape heads are ubiquitously used to read and record on magnetic tapes in technologies as diverse as old VHS tapes, modern hard-drive disks, or magnetic bands on credit cards. Their design highlights the ability to convert electric signals into fluctuations of the magnetic field at very high frequencies, which is essential for the high-density storage demanded nowadays. Here, we twist this conventional use of tape heads to implement one in a magnetic tweezers design, which offers the unique capability of changing the force with a bandwidth of ∼10 kHz. We calibrate our instrument by developing an analytical expression that predicts the magnetic force acting on a superparamagnetic bead based on the Karlqvist approximation of the magnetic field created by a tape head. This theory is validated by measuring the force dependence of protein L unfolding/folding step sizes and the folding properties of the R3 talin domain. We demonstrate the potential of our instrument by carrying out millisecond-long quenches to capture the formation of the ephemeral molten globule state in protein L, which has never been observed before. Our instrument provides the capability of interrogating individual molecules under fast-changing forces with a control and resolution below a fraction of a piconewton, opening a range of force spectroscopy protocols to study protein dynamics under force.


Assuntos
Campos Magnéticos , Proteínas/química , Análise Espectral , Desenho de Equipamento , Fenômenos Mecânicos , Microscopia de Força Atômica , Dobramento de Proteína , Análise Espectral/instrumentação , Análise Espectral/métodos
8.
Proc Natl Acad Sci U S A ; 115(37): 9222-9227, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150415

RESUMO

Bacteria anchor to their host cells through their adhesive pili, which must resist the large mechanical stresses induced by the host as it attempts to dislodge the pathogens. The pili of gram-positive bacteria are constructed as a single polypeptide made of hundreds of pilin repeats, which contain intramolecular isopeptide bonds strategically located in the structure to prevent their unfolding under force, protecting the pilus from degradation by extant proteases and oxygen radicals. Here, we demonstrate the design of a short peptide that blocks the formation of the isopeptide bond present in the pilin Spy0128 from the human pathogen Streptococcus pyogenes, resulting in mechanically labile pilin domains. We use a combination of protein engineering and atomic-force microscopy force spectroscopy to demonstrate that the peptide blocks the formation of the native isopeptide bond and compromises the mechanics of the domain. While an intact Spy0128 is inextensible at any force, peptide-modified Spy0128 pilins readily unfold at very low forces, marking the abrogation of the intramolecular isopeptide bond as well as the absence of a stable pilin fold. We propose that isopeptide-blocking peptides could be further developed as a type of highly specific antiadhesive antibiotics to treat gram-positive pathogens.


Assuntos
Antibacterianos/química , Proteínas de Fímbrias/antagonistas & inibidores , Proteínas de Fímbrias/química , Peptídeos/química , Dobramento de Proteína , Streptococcus pyogenes/química , Antibacterianos/farmacologia , Proteínas de Fímbrias/metabolismo , Humanos , Peptídeos/farmacologia , Domínios Proteicos , Estabilidade Proteica , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade
9.
J Phys Chem Lett ; 9(16): 4707-4713, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30058807

RESUMO

Single-molecule force spectroscopy utilizes polyproteins, which are composed of tandem modular domains, to study their mechanical and structural properties. Under the application of external load, the polyproteins respond by unfolding and refolding domains to acquire the most favored extensibility. However, unlike single-domain proteins, the sequential unfolding of the each domain modifies the free energy landscape (FEL) of the polyprotein nonlinearly. Here we use force-clamp (FC) spectroscopy to measure unfolding and collapse-refolding dynamics of polyubiquitin and poly(I91). Their reconstructed unfolding FEL involves hundreds of kB T in accumulating work performed against conformational entropy, which dwarfs the ∼30 kB T that is typically required to overcome the free energy difference of unfolding. We speculate that the additional entropic energy caused by segmentation of the polyprotein to individual proteins plays a crucial role in defining the "shock absorber" properties of elastic proteins such as the giant muscle protein titin.

10.
Annu Rev Physiol ; 80: 327-351, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29433413

RESUMO

Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding against a pulling force, generating mechanical work that exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin cross bridges reduces the force on titin, causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4-15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil and occurs at forces that exceed the maximum stalling force of single myosin motors. Thus, titin operates like a mechanical battery, storing elastic energy efficiently by unfolding Ig domains and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction.


Assuntos
Conectina/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Animais , Humanos , Dobramento de Proteína
11.
Nat Commun ; 9(1): 185, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330363

RESUMO

The response of titin to mechanical forces is a major determinant of the function of the heart. When placed under a pulling force, the unstructured regions of titin uncoil while its immunoglobulin (Ig) domains unfold and extend. Using single-molecule atomic force microscopy, we show that disulfide isomerization reactions within Ig domains enable a third mechanism of titin elasticity. Oxidation of Ig domains leads to non-canonical disulfide bonds that stiffen titin while enabling force-triggered isomerization reactions to more extended states of the domains. Using sequence and structural analyses, we show that 21% of titin's I-band Ig domains contain a conserved cysteine triad that can engage in disulfide isomerization reactions. We propose that imbalance of the redox status of myocytes can have immediate consequences for the mechanical properties of the sarcomere via alterations of the oxidation state of titin domains.


Assuntos
Conectina/química , Dissulfetos/química , Elasticidade , Domínios de Imunoglobulina , Animais , Conectina/metabolismo , Cisteína/química , Cisteína/metabolismo , Isomerismo , Microscopia de Força Atômica , Modelos Moleculares , Oxirredução , Dobramento de Proteína , Desdobramento de Proteína , Coelhos , Sarcômeros/química , Sarcômeros/metabolismo
12.
Nat Commun ; 8(1): 668, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939815

RESUMO

Proteins fold under mechanical forces in a number of biological processes, ranging from muscle contraction to co-translational folding. As force hinders the folding transition, chaperones must play a role in this scenario, although their influence on protein folding under force has not been directly monitored yet. Here, we introduce single-molecule magnetic tweezers to study the folding dynamics of protein L in presence of the prototypical molecular chaperone trigger factor over the range of physiological forces (4-10 pN). Our results show that trigger factor increases prominently the probability of folding against force and accelerates the refolding kinetics. Moreover, we find that trigger factor catalyzes the folding reaction in a force-dependent manner; as the force increases, higher concentrations of trigger factor are needed to rescue folding. We propose that chaperones such as trigger factor can work as foldases under force, a mechanism which could be of relevance for several physiological processes.Proteins fold under mechanical force during co-translational folding at the ribosome. Here, the authors use single molecule magnetic tweezers to study the influence of chaperones on protein folding and show that the ribosomal chaperone trigger factor acts as a mechanical foldase by promoting protein folding under force.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína , Proteínas de Bactérias/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Análise Espectral/métodos
13.
J Phys Chem Lett ; 8(15): 3642-3647, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28723106

RESUMO

Protein aging may manifest as a mechanical disease that compromises tissue elasticity. As proved recently, while proteins respond to changes in force with an instantaneous elastic recoil followed by a folding contraction, aged proteins break bad, becoming unstructured polymers. Here, we explain this phenomenon in the context of a free energy model, predicting the changes in the folding landscape of proteins upon oxidative aging. Our findings validate that protein folding under force is constituted by two separable components, polymer properties and hydrophobic collapse, and demonstrate that the latter becomes irreversibly blocked by oxidative damage. We run Brownian dynamics simulations on the landscape of protein L octamer, reproducing all experimental observables, for a naive and damaged polyprotein. This work provides a unique tool to understand the evolving free energy landscape of elastic proteins upon physiological changes, opening new perspectives to predict age-related diseases in tissues.

14.
Angew Chem Int Ed Engl ; 56(33): 9741-9746, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28470663

RESUMO

A hallmark of tissue ageing is the irreversible oxidative modification of its proteins. We show that single proteins, kept unfolded and extended by a mechanical force, undergo accelerated ageing in times scales of minutes to days. A protein forced to be continuously unfolded completely loses its ability to contract by folding, becoming a labile polymer. Ageing rates vary among different proteins, but in all cases they lose their mechanical integrity. Random oxidative modification of cryptic side chains exposed by mechanical unfolding can be slowed by the addition of antioxidants such as ascorbic acid, or accelerated by oxidants. By contrast, proteins kept in the folded state and probed over week-long experiments show greatly reduced rates of ageing. We demonstrate a novel approach whereby protein ageing can be greatly accelerated: the constant unfolding of a protein for hours to days is equivalent to decades of exposure to free radicals under physiological conditions.


Assuntos
Proteínas/metabolismo , Antioxidantes/farmacologia , Fenômenos Mecânicos , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Proteínas/química
15.
J Biol Chem ; 292(21): 8988-8997, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28348083

RESUMO

Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.


Assuntos
Adesinas Bacterianas/química , Dissulfetos/química , Histamina/química , Metilaminas/química , Dobramento de Proteína , Streptococcus pyogenes/química
16.
J Am Chem Soc ; 138(33): 10546-53, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27409974

RESUMO

Under physiological conditions, protein oxidation and misfolding occur with very low probability and on long times scales. Single-molecule techniques provide the ability to distinguish between properly folded and damaged proteins that are otherwise masked in ensemble measurements. However, at physiological conditions these rare events occur with a time constant of several hours, inaccessible to current single-molecule approaches. Here we present a magnetic-tweezers-based technique that allows, for the first time, the study of folding of single proteins during week-long experiments. This technique combines HaloTag anchoring, sub-micrometer positioning of magnets, and an active correction of the focal drift. Using this technique and protein L as a molecular template, we generate a magnet law by correlating the distance between the magnet and the measuring paramagnetic bead with unfolding/folding steps. We demonstrate that, using this magnet law, we can accurately measure the dynamics of proteins over a wide range of forces, with minimal dispersion from bead to bead. We also show that the force calibration remains invariant over week-long experiments applied to the same single proteins. The approach demonstrated in this Article opens new, exciting ways to examine proteins on the "human" time scale and establishes magnetic tweezers as a valuable technique to study low-probability events that occur during protein folding under force.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Imãs , Fenômenos Mecânicos , Dobramento de Proteína
17.
Cell Rep ; 14(6): 1339-1347, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26854230

RESUMO

Current theories of muscle contraction propose that the power stroke of a myosin motor is the sole source of mechanical energy driving the sliding filaments of a contracting muscle. These models exclude titin, the largest protein in the human body, which determines the passive elasticity of muscles. Here, we show that stepwise unfolding/folding of titin immunoglobulin (Ig) domains occurs in the elastic I band region of intact myofibrils at physiological sarcomere lengths and forces of 6-8 pN. We use single-molecule techniques to demonstrate that unfolded titin Ig domains undergo a spontaneous stepwise folding contraction at forces below 10 pN, delivering up to 105 zJ of additional contractile energy, which is larger than the mechanical energy delivered by the power stroke of a myosin motor. Thus, it appears inescapable that folding of titin Ig domains is an important, but as yet unrecognized, contributor to the force generated by a contracting muscle.


Assuntos
Conectina/química , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Miosinas/química , Sarcômeros/fisiologia , Animais , Fenômenos Biomecânicos , Conectina/fisiologia , Elasticidade , Humanos , Imunoglobulina G/química , Imunoglobulina G/fisiologia , Mecanotransdução Celular , Músculo Esquelético/ultraestrutura , Miosinas/fisiologia , Domínios Proteicos , Dobramento de Proteína , Coelhos , Sarcômeros/ultraestrutura
18.
Proc Natl Acad Sci U S A ; 113(9): 2490-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884173

RESUMO

Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.


Assuntos
Proteínas de Bactérias/química , Fímbrias Bacterianas/química , Actinomyces/química , Corynebacterium diphtheriae/química
19.
J Biol Chem ; 291(8): 4226-35, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26703476

RESUMO

Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the ß1 and ß2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation.


Assuntos
Agregados Proteicos , Dobramento de Proteína , gama-Cristalinas/química , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , gama-Cristalinas/metabolismo
20.
Macromol Mater Eng ; 300(3): 369-376, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25960689

RESUMO

We present a novel tensile testing system optimized for the mechanical loading of microliter volume protein hydrogels. Our apparatus incorporates a voice coil servoactuator capable of carrying out fixed velocity extension-relaxation cycles as well as extension step protocols. The setup is equipped with an acrylic cuvette permitting day-long incubations in solution. To demonstrate the functionality of the device, we photochemically crosslinked polyproteins of the I91 immunoglobulin domain from the muscle protein titin to create solid hydrogels that recapitulate elastic properties of muscle. We present data from tensile tests of these low volume biomaterials that support protein unfolding as a main determinant of the elasticity of protein hydrogels. Our results demonstrate the potential use of protein hydrogels as biomaterials whose elastic properties dynamically respond to their environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...