Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194178

RESUMO

SF3B1 is the most recurrently mutated RNA splicing gene in cancer; However, the study of its pathogenic role has been hindered by a lack of disease-relevant cell line models. Here, we compared four genome engineering platforms to establish SF3B1 mutant cell lines: CRISPR-Cas9 editing, AAV HDR editing, base editing (ABEmax, ABE8e), and prime editing (PE2, PE3, PE5Max). We showed that prime editing via PE5max achieved the most efficient SF3B1 K700E editing across a wide range of cell lines. We further refined our approach by coupling prime editing with a fluorescent reporter that leverages a SF3B1 mutation-responsive synthetic intron to mark successfully edited cells. By applying this approach, called prime editing coupled intron-assisted selection (PRECIS), we introduced the K700E hotspot mutation into two chronic lymphocytic leukemia (CLL) cell lines, HG-3 and MEC-1. We demonstrated that our PRECIS-engineered cells faithfully recapitulate known mutant SF3B1 phenotypes including altered splicing, copy number variations, and cell growth defect. Moreover, we uncovered that SF3B1 mutation can cause the loss of Y chromosome in CLL. Our results showcase PRECIS as an efficient and generalizable method for engineering genetically faithful SF3B1 mutant models. Our approach provides new insights on the role of SF3B1 mutation in cancer and enables the generation of SF3B1 mutant cell lines in relevant cellular context.

2.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463047

RESUMO

RNA splicing factor SF3B1 is recurrently mutated in various cancers, particularly in hematologic malignancies. We previously reported that coexpression of Sf3b1 mutation and Atm deletion in B cells, but not either lesion alone, leads to the onset of chronic lymphocytic leukemia (CLL) with CLL cells harboring chromosome amplification. However, the exact role of Sf3b1 mutation and Atm deletion in chromosomal instability (CIN) remains unclear. Here, we demonstrated that SF3B1 mutation promotes centromeric R-loop (cen-R-loop) accumulation, leading to increased chromosome oscillation, impaired chromosome segregation, altered spindle architecture, and aneuploidy, which could be alleviated by removal of cen-R-loop and exaggerated by deletion of ATM. Aberrant splicing of key genes involved in R-loop processing underlay augmentation of cen-R-loop, as overexpression of the normal isoform, but not the altered form, mitigated mitotic stress in SF3B1-mutant cells. Our study identifies a critical role of splice variants in linking RNA splicing dysregulation and CIN and highlights cen-R-loop augmentation as a key mechanism for leukemogenesis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Estruturas R-Loop , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Mutação , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
3.
Blood Cancer Discov ; 4(3): 228-245, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067905

RESUMO

RNA splicing dysregulation underlies the onset and progression of cancers. In chronic lymphocytic leukemia (CLL), spliceosome mutations leading to aberrant splicing occur in ∼20% of patients. However, the mechanism for splicing defects in spliceosome-unmutated CLL cases remains elusive. Through an integrative transcriptomic and proteomic analysis, we discover that proteins involved in RNA splicing are posttranscriptionally upregulated in CLL cells, resulting in splicing dysregulation. The abundance of splicing complexes is an independent risk factor for poor prognosis. Moreover, increased splicing factor expression is highly correlated with the abundance of METTL3, an RNA methyltransferase that deposits N6-methyladenosine (m6A) on mRNA. METTL3 is essential for cell growth in vitro and in vivo and controls splicing factor protein expression in a methyltransferase-dependent manner through m6A modification-mediated ribosome recycling and decoding. Our results uncover METTL3-mediated m6A modification as a novel regulatory axis in driving splicing dysregulation and contributing to aggressive CLL. SIGNIFICANCE: METTL3 controls widespread splicing factor abundance via translational control of m6A-modified mRNA, contributes to RNA splicing dysregulation and disease progression in CLL, and serves as a potential therapeutic target in aggressive CLL. See related commentary by Janin and Esteller, p. 176. This article is highlighted in the In This Issue feature, p. 171.


Assuntos
Processamento Alternativo , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Proteômica , Metiltransferases/genética , Metiltransferases/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Nucleic Acids Res ; 49(12): 7103-7121, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34161584

RESUMO

The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML-a model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5' and 3' splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.


Assuntos
Precursores de RNA/química , Splicing de RNA , RNA Mensageiro/química , Células HeLa , Humanos , Íntrons , Mutação , Conformação de Ácido Nucleico , Domínios Proteicos , Precursores de RNA/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Processamento U2AF/metabolismo
5.
Nucleic Acids Res ; 48(11): 6294-6309, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32402057

RESUMO

Recognition of highly degenerate mammalian splice sites by the core spliceosomal machinery is regulated by several protein factors that predominantly bind exonic splicing motifs. These are postulated to be single-stranded in order to be functional, yet knowledge of secondary structural features that regulate the exposure of exonic splicing motifs across the transcriptome is not currently available. Using transcriptome-wide RNA structural information we show that retained introns in mouse are commonly flanked by a short (≲70 nucleotide), highly base-paired segment upstream and a predominantly single-stranded exonic segment downstream. Splicing assays with select pre-mRNA substrates demonstrate that loops immediately upstream of the introns contain pre-mRNA-specific splicing enhancers, the substitution or hybridization of which impedes splicing. Additionally, the exonic segments flanking the retained introns appeared to be more enriched in a previously identified set of hexameric exonic splicing enhancer (ESE) sequences compared to their spliced counterparts, suggesting that base-pairing in the exonic segments upstream of retained introns could be a means for occlusion of ESEs. The upstream exonic loops of the test substrate promoted recruitment of splicing factors and consequent pre-mRNA structural remodeling, leading up to assembly of the early spliceosome. These results suggest that disruption of exonic stem-loop structures immediately upstream (but not downstream) of the introns regulate alternative splicing events, likely through modulating accessibility of splicing factors.


Assuntos
Pareamento de Bases , Éxons , Íntrons , Splicing de RNA , Adenoviridae/genética , Animais , Sequência de Bases , Elementos Facilitadores Genéticos , Éxons/genética , Inativação Gênica , Íntrons/genética , Camundongos , Células-Tronco Embrionárias Murinas , Mutação , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Spliceossomos/metabolismo , Transcriptoma/genética , Globinas beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA