RESUMO
Genetic and non-genetic factors contribute to obsessive-compulsive disorder (OCD), with strong evidence of familial clustering. Genomic studies in psychiatry have used the concepts of families that are "simplex" (one affected) versus "multiplex" (multiple affected). Our study compares demographic and clinical data from OCD probands in simplex and multiplex families to uncover potential differences. We analyzed 994 OCD probands (501 multiplex, 493 simplex) from the Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders (C-TOC). Clinicians administered the Structured Clinical Interview for DSM-IV (SCID-IV) to diagnose, Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) to assess severity, and Dimensional Yale-Brown Obsessive-Compulsive Scale (DY-BOCS) to assess symptom dimensionality. Demographics, clinical history, and family data were collected. Compared to simplex probands, multiplex probands had earlier onset, higher sexual/religious and hoarding dimensions severity, increased comorbidity with other obsessive-compulsive-related disorders (OCRD), and higher family history of psychiatric disorders. These comparisons provide the first insights into demographic and clinical differences between Latin American simplex and multiplex families with OCD. Distinct clinical patterns may suggest diverse genetic and environmental influences. Further research is needed to clarify these differences, which have implications for symptom monitoring and management.
Assuntos
Transtorno Obsessivo-Compulsivo , Humanos , Transtorno Obsessivo-Compulsivo/epidemiologia , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/diagnóstico , Comorbidade , Transtorno da Personalidade Compulsiva , Brasil/epidemiologia , Comportamento SexualRESUMO
BACKGROUND: Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder with a genetic risk component, yet identification of high-confidence risk genes has been challenging. In recent years, risk gene discovery in other complex psychiatric disorders has been achieved by studying rare de novo (DN) coding variants. METHODS: We performed whole-exome sequencing in 222 OCD parent-child trios (184 trios after quality control), comparing DN variant frequencies with 777 previously sequenced unaffected trios. We estimated the contribution of DN mutations to OCD risk and the number of genes involved. Finally, we looked for gene enrichment in other datasets and canonical pathways. RESULTS: DN likely gene disrupting and predicted damaging missense variants are enriched in OCD probands (rate ratio, 1.52; p = .0005) and contribute to risk. We identified 2 high-confidence risk genes, each containing 2 DN damaging variants in unrelated probands: CHD8 and SCUBE1. We estimate that 34% of DN damaging variants in OCD contribute to risk and that DN damaging variants in approximately 335 genes contribute to risk in 22% of OCD cases. Furthermore, genes harboring DN damaging variants in OCD are enriched for those reported in neurodevelopmental disorders, particularly Tourette's disorder and autism spectrum disorder. An exploratory network analysis reveals significant functional connectivity and enrichment in canonical pathways, biological processes, and disease networks. CONCLUSIONS: Our findings show a pathway toward systematic gene discovery in OCD via identification of DN damaging variants. Sequencing larger cohorts of OCD parent-child trios will reveal more OCD risk genes and will provide needed insights into underlying disease biology.