Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Orbit ; 35(3): 140-3, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27070554
2.
Am J Pathol ; 184(5): 1419-28, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24656918

RESUMO

Proliferative vitreoretinopathy is caused by the contraction of fibrotic membranes on the epiretinal surface of the neurosensory retina, resulting in a traction retinal detachment and loss of visual acuity. Retinal pigment epithelial (RPE) cells play an important role in formation of such fibrotic, contractile membranes. We investigated the role of Wnt/ß-catenin signaling, a pathway implicated in several fibrotic diseases, in RPE cells in proliferative vitreoretinopathy. In vitro culture of swine RPE sheets resulted in nuclear translocation of ß-catenin in dedifferentiated RPE cells. FH535, a specific inhibitor of ß-catenin signaling, reduced the outgrowth of cultured RPE sheets and prevented dedifferentiated RPE cell proliferation and migration. It also inhibited formation of contractile membranes by dedifferentiated RPE cells on collagen I matrices. Expression and function of the ß-catenin signaling target connexin-43 were down-regulated by FH535, and functional blockade of connexins with carbenoxolone also prevented the in vitro formation of fibrotic, contractile membranes. Intravitreal injection of FH535 in swine also inhibited formation of dense, contractile membranes on the epiretinal surface and prevented development of traction retinal detachment. These findings demonstrate that ß-catenin signaling is involved in formation of contractile membranes by dedifferentiated RPE cells and suggest that adjunctive treatment targeting this pathway could be useful in preventing proliferative vitreoretinopathy.


Assuntos
Células Epiteliais/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia , beta Catenina/metabolismo , Animais , Desdiferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Conexina 43/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Membranas/efeitos dos fármacos , Membranas/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Sus scrofa , Vitreorretinopatia Proliferativa/fisiopatologia
3.
Invest Ophthalmol Vis Sci ; 55(4): 2452-9, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24618321

RESUMO

PURPOSE: Functional studies have detected deficits in retinal signaling in asymptomatic children from families with inherited autosomal dominant retinitis pigmentosa (RP). Whether retinal abnormalities are present earlier during gestation or shortly after birth in a subset of children with autosomal dominant RP is unknown and no appropriate animal RP model possessing visual function at birth has been available to examine this possibility. In a recently developed transgenic P23H (TgP23H) rhodopsin swine model of RP, we tracked changes in pre- and early postnatal retinal morphology, as well as early postnatal retinal function. METHODS: Domestic swine inseminated with semen from a TgP23H miniswine founder produced TgP23H hybrid and wild type (Wt) littermates. Outer retinal morphology was assessed at light and electron microscopic levels between embryonic (E) and postnatal (P) day E85 to P3. Retinal function was evaluated using the full field electroretinogram at P3. RESULTS: Embryonic TgP23H rod photoreceptors are malformed and their rhodopsin expression pattern is abnormal. Consistent with morphological abnormalities, rod-driven function is absent at P3. In contrast, TgP23H and Wt cone photoreceptor morphology (E85-P3) and cone-driven retinal function (P3) are similar. CONCLUSIONS: Prenatal expression of mutant rhodopsin alters the normal morphological and functional development of rod photoreceptors in TgP23H swine embryos. Despite this significant change, cone photoreceptors are unaffected. Human infants with similarly aggressive RP might never have rod vision, although cone vision would be unaffected. Such aggressive forms of RP in preverbal children would require early intervention to delay or prevent functional blindness.


Assuntos
DNA/genética , Mutação , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/genética , Rodopsina/biossíntese , Animais , Animais Geneticamente Modificados , Análise Mutacional de DNA , Modelos Animais de Doenças , Eletrorretinografia , Genótipo , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Rodopsina/genética , Suínos , Porco Miniatura
4.
Invest Ophthalmol Vis Sci ; 55(4): 2460-8, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24618325

RESUMO

PURPOSE: Human and swine retinas have morphological and functional similarities. In the absence of primate models, the swine is an attractive model to study retinal function and disease, with its cone-rich visual streak, our ability to manipulate their genome, and the differences in susceptibility of rod and cone photoreceptors to disease. We characterized the normal development of cone function and its subsequent decline in a P23H rhodopsin transgenic (TgP23H) miniswine model of autosomal dominant RP. METHODS: Semen from TgP23H miniswine 53-1 inseminated domestic swine and produced TgP23H and Wt hybrid littermates. Retinal function was evaluated using ERGs between postnatal days (P) 14 and 120. Retinal ganglion cell (RGC) responses were recorded to full-field stimuli at several intensities. Retinal morphology was assessed using light and electron microscopy. RESULTS: Scotopic retinal function matures in Wt pigs up to P60, but never develops in TgP23H pigs. Wt and TgP23H photopic vision matures similarly up to P30 and diverges at P60 where TgP23H cone vision declines. There are fewer TgP23H RGCs with visually evoked responses at all ages and their response to light is compromised. Photoreceptor morphological changes mirror these functional changes. CONCLUSIONS: Lack of early scotopic function in TgP23H swine suggests it as a model of an aggressive form of RP. In this mammalian model of RP, normal cone function develops independent of rod function. Therefore, its retina represents a system in which therapies to rescue cones can be developed to prolong photopic visual function in RP patients.


Assuntos
Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Retinose Pigmentar/patologia , Rodopsina/metabolismo , Animais , Animais Geneticamente Modificados , Contagem de Células , Modelos Animais de Doenças , Eletrorretinografia , Microscopia Eletrônica de Transmissão , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia , Suínos , Porco Miniatura
5.
Exp Eye Res ; 97(1): 137-47, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22251455

RESUMO

Our purpose was to find a method to create a large animal model of inducible photoreceptor damage. To this end, we tested in domestic swine the efficacy of two chemical toxins, known to create photoreceptor damage in other species: Iodoacetic Acid (IAA) and Sodium Iodate (NaIO(3)). Intravenous (IV) administration of NaIO(3) up to 90 mg/kg had no effect on retinal function and 110 mg/kg was lethal. IV administration of IAA (5-20 mg/kg) produced concentration-dependent changes in visual function as measured by full-field and multi-focal electroretinograms (ffERG and mfERG), and 30 mg/kg IAA was lethal. The IAA-induced effects measured at two weeks were stable through eight weeks post-injection, the last time point investigated. IAA at 7.5, 10, and 12 mg/kg produce a concentration-dependent reduction in both ffERG b-wave and mfERG N1-P1 amplitudes compared to baseline at all post-injection times. Comparisons of dark- and light-adapted ffERG b-wave amplitudes show a more significant loss of rod relative to cone function. The fundus of swine treated with ≥10 mg/kg IAA was abnormal with thinner retinal vessels and pale optic discs, and we found no evidence of bone spicule formation. Histological evaluations show concentration-dependent outer retinal damage that correlates with functional changes. We conclude that NaIO(3,) is not an effective toxin in swine. In contrast, IAA can be used to create a rapidly inducible, selective, stable and concentration-dependent model of photoreceptor damage in swine retina. Because of these attributes this large animal model of controlled photoreceptor damage should be useful in the investigation of treatments to replace damaged photoreceptors.


Assuntos
Modelos Animais de Doenças , Inibidores Enzimáticos/toxicidade , Iodatos/toxicidade , Ácido Iodoacético/toxicidade , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Degeneração Retiniana/induzido quimicamente , Animais , Glicemia/metabolismo , Adaptação à Escuridão , Relação Dose-Resposta a Droga , Eletrorretinografia , Infusões Intravenosas , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/sangue , Degeneração Retiniana/fisiopatologia , Sus scrofa
6.
Invest Ophthalmol Vis Sci ; 53(1): 501-7, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22247487

RESUMO

PURPOSE: The Pro23His (P23H) rhodopsin (RHO) mutation underlies the most common form of human autosomal dominant retinitis pigmentosa (adRP). The objective of this investigation was to establish a transgenic miniature swine model of RP using the human P23H RHO gene. METHODS: Somatic cell nuclear transfer (SCNT) was used to create transgenic miniature pigs that expressed the human P23H RHO mutation. From these experiments, six transgenic founders were identified whose retinal function was studied with full-field electroretinography (ffERG) from 3 months through 2 years. Progeny from one founder were generated and genotyped to determine transgene inheritance pattern. Retinal mRNA was isolated, and the ratio of P23H to wild-type pig RHO was measured. RESULTS: A single transgene integration site was observed for five of the six founders. All founders had abnormal scotopic and photopic ffERGs after 3 months. The severity of the ffERG phenotype was grouped into moderately and severely affected groups. Offspring of one founder inherited the transgene as an autosomal dominant mutation. mRNA analyses demonstrated that approximately 80% of total RHO was mutant P23H. CONCLUSIONS: Expression of the human RHO P23H transgene in the retina creates a miniature swine model with an inheritance pattern and retinal function that mimics adRP. This large-animal model can serve as a novel tool for the study of the pathogenesis and therapeutic intervention in the most common form of adRP.


Assuntos
Regulação da Expressão Gênica , Técnicas de Transferência Nuclear , RNA/genética , Retina/patologia , Retinose Pigmentar/genética , Rodopsina/genética , Porco Miniatura/genética , Animais , Animais Geneticamente Modificados , Southern Blotting , Linhagem Celular , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Seguimentos , Genótipo , Humanos , Hibridização in Situ Fluorescente , Masculino , Mutação , Retina/metabolismo , Retina/fisiopatologia , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Rodopsina/biossíntese , Suínos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA