Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 8(1): 84-87, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35619413

RESUMO

We characterize via small-angle neutron scattering the structural properties of a mixture of all-DNA particles with functionalities 4 (A) and 2 (B) constrained by design to reside close to the percolation threshold. DNA base sequences are selected such that A particles can only bind with B ones and that at the studied temperature (10 °C) all AB bonds are formed and long-lived, originating highly polydisperse persistent equilibrium clusters. The concentration dependence of the scattered intensity and its wavevector dependence is exploited to determine the fractal dimension and the size distribution of the clusters, which are found to be consistent with the critical exponents of the 3-D percolation universality class. The value of DNA nanoparticles as nanometric patchy colloids with well-defined functionality, bonding selectivity, and exquisite control of the interaction strength is demonstrated.

2.
J Chem Phys ; 148(2): 025103, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29331126

RESUMO

The proper design of DNA sequences allows for the formation of well-defined supramolecular units with controlled interactions via a consecution of self-assembling processes. Here, we benefit from the controlled DNA self-assembly to experimentally realize particles with well-defined valence, namely, tetravalent nanostars (A) and bivalent chains (B). We specifically focus on the case in which A particles can only bind to B particles, via appropriately designed sticky-end sequences. Hence AA and BB bonds are not allowed. Such a binary mixture system reproduces with DNA-based particles the physics of poly-functional condensation, with an exquisite control over the bonding process, tuned by the ratio, r, between B and A units and by the temperature, T. We report dynamic light scattering experiments in a window of Ts ranging from 10 °C to 55 °C and an interval of r around the percolation transition to quantify the decay of the density correlation for the different cases. At low T, when all possible bonds are formed, the system behaves as a fully bonded network, as a percolating gel, and as a cluster fluid depending on the selected r.


Assuntos
DNA/química , Sítios de Ligação , Difusão Dinâmica da Luz , Géis/química , Conformação de Ácido Nucleico , Temperatura
3.
J Chem Phys ; 145(8): 084910, 2016 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-27586949

RESUMO

DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Análise Fatorial , Géis/química , Conformação de Ácido Nucleico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...