Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(2): 377-385, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042343

RESUMO

RNA is prone to both chemical degradation and/or physical instability. Some of the factors affecting stability of RNA in solution are its length, 3' poly A tail and 5' cap integrity, excipients, buffering species, pH of the solution, nucleases, and divalent cations. In this work, we showed the effect of temperature, messenger RNA (mRNA) length, buffering species, pH of the solution, and the concentration of mRNA on its chemical and physical stability. Our thermodynamic analysis of a 4000 nucleotide-long mRNA measured an activation energy of 31.5 kcal/mol normalized per phosphodiester backbone. We found mRNA length to be negatively correlated to its stability. Buffering species and pH of the solution affected mRNA integrity along with affecting the onset temperature of melting obtained by Differential Scanning Calorimetry (DSC) thermograms. It was also found that increasing the concentration of mRNA in solution increased its stability.


Assuntos
RNA , Temperatura , RNA/genética , Termodinâmica , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , RNA Mensageiro/genética , Dicroísmo Circular
2.
Angew Chem Int Ed Engl ; 61(21): e202116727, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254698

RESUMO

A new isolation protocol was recently reported for highly purified metallic Fullertubes D5h -C90 , D3d -C96 , and D5d -C100, which exhibit unique electronic features. Here, we report the oxygen reduction electrocatalytic behavior of C60 , C70 (spheroidal fullerenes), and C90 , C96 , and C100 (tubular fullerenes) using a combination of experimental and theoretical approaches. C96 (a metal-free catalyst) displayed remarkable oxygen reduction reaction (ORR) activity, with an onset potential of 0.85 V and a halfway potential of 0.75 V, which are close to the state-of-the-art Pt/C benchmark catalyst values. We achieved an excellent power density of 0.75 W cm-2 using C96 as a modified cathode in a proton-exchange membrane fuel cell, comparable to other recently reported efficient metal-free catalysts. Combined band structure (experimentally calculated) and free-energy (DFT) investigations show that both favorable energy-level alignment active catalytic sites on the carbon cage are responsible for the superior activity of C96 .

3.
Nanoscale ; 14(10): 3858-3864, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35199813

RESUMO

Considerable efforts are being made to find cheaper and more efficient alternatives to the currently commercially available catalysts based on precious metals for the Hydrogen Evolution Reaction (HER). In this context, fullerenes have started to gain attention due to their suitable electronic properties and relatively easy functionalization. We found that the covalent functionalization of C60, C70 and Sc3N@IhC80 with diazonium salts endows the fullerene cages with ultra-active charge polarization centers, which are located near the carbon-diazonium bond and improve the efficiency towards the molecular generation of hydrogen. To support our findings, Electrochemical Impedance Spectroscopy (EIS), double layer capacitance (Cdl) and Mott-Schottky approximation were performed. Among all the functionalized fullerenes, DPySc3N@IhC80 exhibited a very low onset potential (-0.025 V vs. RHE) value, which is due to the influence of the inner cluster on the extra improvement of the electronic density states of the catalytic sites. For the first time, the covalent assembly of fullerenes and diazonium groups was used as an electron polarization strategy to build superior molecular HER catalytic systems.

4.
J Am Chem Soc ; 143(10): 4064-4073, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661615

RESUMO

Platinum (Pt)-based-nanomaterials are currently the most successful catalysts for the oxygen reduction reaction (ORR) in electrochemical energy conversion devices such as fuel cells and metal-air batteries. Nonetheless, Pt catalysts have serious drawbacks, including low abundance in nature, sluggish kinetics, and very high costs, which limit their practical applications. Herein, we report the first rationally designed nonprecious Co-Cu bimetallic metal-organic framework (MOF) using a low-temperature hydrothermal method that outperforms the electrocatalytic activity of Pt/C for ORR in alkaline environments. The MOF catalyst surpassed the ORR performance of Pt/C, exhibiting an onset potential of 1.06 V vs RHE, a half-wave potential of 0.95 V vs RHE, and a higher electrochemical stability (ΔE1/2 = 30 mV) after 1000 ORR cycles in 0.1 M NaOH. Additionally, it outperformed Pt/C in terms of power density and cyclability in zinc-air batteries. This outstanding behavior was attributed to the unique electronic synergy of the Co-Cu bimetallic centers in the MOF network, which was revealed by XPS and PDOS.

5.
J Colloid Interface Sci ; 581(Pt B): 905-918, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956910

RESUMO

Porous carbon encapsulated non-precious metal nanocatalysts have recently opened the ways towards the development of high-performance water remediation and energy conversion technologies. Herein, we report a facile, scalable and green synthetic methodology to fabricate porous carbon encapsulated transition metal nanocatalysts (M@TP: M = Cu, Ni, Fe and Co) using commercial tissue paper. The morphology, crystalline structure, chemical composition and textural properties of the M@TP nanocatalysts were thoroughly characterized. The catalytic activity of the M@TP nanocatalysts was investigated for the degradation of Congo red (CR) via peroxymonosulfate activation. Co@TP-6 was found to be the most active catalyst allowing 97.68% degradation in 30 min with a higher rate constant of 0.109 min-1. The nanocatalysts also displayed a carbon shell thickness-dependent electrocatalytic hydrogen evolution reaction (HER) activity, most likely due to the shielding effect of the carbon layers over the electron transfer (ET) processes at the metal core/carbon interfaces. Remarkably, the Ni@TP-6 electrocatalyst, with the smaller carbon shell thickness, showed the best electrocatalytic performance. They delivered an ultralow onset potential of -30 mV vs RHE, an overpotential of 105 mV at a current density of 10 mA·cm-2 and an excellent electrochemical stability to keep the 92% of the initial current applied after 25000 s, which is comparable with the HER activity of the state-of-the-art Ni-based catalysts.

6.
Angew Chem Int Ed Engl ; 60(1): 122-141, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33090642

RESUMO

An emerging class of heterostructures with unprecedented (photo)electrocatalytic behavior, involving the combination of fullerenes and low-dimensional (LD) nanohybrids, is currently expanding the field of energy materials. The unique physical and chemical properties of fullerenes have offered new opportunities to tailor both the electronic structures and the catalytic activities of the nanohybrid structures. Here, we comprehensively review the synthetic approaches to prepare fullerene-based hybrids with LD (0D, 1D, and 2D) materials in addition to their resulting structural and catalytic properties. Recent advances in the design of fullerene-based LD nanomaterials for (photo)electrocatalytic applications are emphasized. The fundamental relationship between the electronic structures and the catalytic functions of the heterostructures, including the role of the fullerenes, is addressed to provide an in-depth understanding of these emerging materials at the molecular level.

7.
J Am Chem Soc ; 142(42): 17923-17927, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33030340

RESUMO

Fullerene-based low-dimensional (LD) heterostructures have emerged as excellent energy conversion materials. We constructed van der Waals 1T-MoS2/C60 0D-2D heterostructures via a one-pot synthetic approach for catalytic hydrogen generation. The interfacial 1T-MoS2-C60 and C60-C60 interactions as well as their electrocatalytic properties were finely controlled by varying the weight percentages of the fullerenes. 1T-MoS2 platforms provided a novel template for the formation of C60 nanosheets (NSs) within a very narrow fullerene concentration range. The heterostructure domains of 1T-MoS2 and C60 NSs exhibited excellent hydrogen evolution reaction (HER) performances, with one of the lowest onset potentials and ΔGH* values for LD non-precious nanomaterials reported to date.

8.
Chem Sci ; 11(11): 2915-2925, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34122792

RESUMO

Although noble metal nanocatalysts show superior performance to conventional catalysts, they can be problematic when balancing catalytic efficiency and reusability. In order to address this dilemma, we developed a smart paper transformer (s-PAT) to support nanocatalysts, based on easy phase conversion between paper and pulp, for the first time. The pulp phase was used to maintain the high catalytic efficiency of the nanocatalysts and the transformation to paper enabled their high reusability. Herein, as an example of smart paper transformers, a novel chromatography paper-supported Au nanosponge (AuNS/pulp) catalyst was developed through a simple water-based preparation process for the successful reduction of p-nitrophenol to demonstrate the high catalytic efficiency and reusability of the noble metal nanocatalyst/pulp system. The composition, structure, and morphology of the AuNS/pulp catalyst were characterized by XRD, TGA, FE-SEM, ICP, TEM, FT-IR, and XPS. The AuNS/pulp catalyst was transformed into the pulp phase during the catalytic reaction and into the paper phase to recover the catalysts after use. Owing to this smart switching of physical morphology, the AuNS/pulp catalyst was dispersed more evenly in the solution. Therefore, it exhibited excellent catalytic performance for p-nitrophenol reduction. Under optimal conditions, the conversion rate of p-nitrophenol reached nearly 100% within 6 min and the k value of AuNS/pulp (0.0106 s-1) was more than twice that of a traditional chromatography paper-based catalyst (0.0048 s-1). Additionally, it exhibited outstanding reusability and could maintain its high catalytic efficiency even after fifteen recycling runs. Accordingly, the unique phase switching of this smart paper transformer enables Au nanosponge to transform into a highly efficient and cost-effective multifunctional catalyst. The paper transformer can support various nanocatalysts for a wide range of applications, thus providing a new insight into maintaining both high catalytic efficiency and reusability of nanocatalysts in the fields of environmental catalysis and nanomaterials.

9.
J Mater Chem C Mater ; 8(20): 6813-6819, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33777397

RESUMO

In this work, two new C70 isomers, α and ß bis(2-(thiophen-2-yl)ethyl)-C70-fullerene mono-adducts (DTC70), were synthesized, characterized and used as electron transporting materials (ETMs) in perovskite solar cells (PSCs). Our results show that the α isomer improves both the J sc and FF values of the devices, when compared to the results for the ß-isomer and to those for phenyl-C70-butyric acid methyl ester (PC71BM), used as control. Devices based on α-DTC70 achieved a power conversion efficiency (PCE) of 15.9%, which is higher than that observed with PC71BM (15.1%).

10.
RSC Adv ; 10(34): 19861-19866, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520425

RESUMO

Light induced charge separation in a newly synthesized triphenylamine-thiophene-Sc3N@I h -C80 donor-acceptor conjugate and its C60 analog, triphenylamine-thiophene-C60 conjugate is reported, and the significance of the thiophene spacer in promoting electron transfer events is unraveled.

11.
ACS Appl Mater Interfaces ; 11(37): 34408-34415, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31318519

RESUMO

The synthesis, characterization, and incorporation of phenyl-C61-butyric acid methyl ester (PC61BM)-like derivatives as electron transporting materials (ETMs) in inverted perovskite solar cells (PSCs) are reported. These compounds have the same structure except for the ester substituent, which was varied from methyl to phenyl to thienyl and to pyridyl. The three latter derivatives performed better than PC61BM in PSCs, mainly attributed to the specific interactions of the fullerenes with the perovskite layer, as evidenced by X-ray photoelectron spectroscopy (XPS) and steady-state and time-resolved photoluminescence (SS- and TRPL) measurements. The experimental results were fully supported by density functional theory (DFT) calculations, which showed that the strongest interactions were exhibited by the compound possessing the pyridyl substituent.

12.
New J Chem ; 42(17): 14551-14558, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30906190

RESUMO

The synthesis of new C60 fullerene derivatives functionalized with thiophene moieties as well as with electron donating or electron withdrawing groups, bromine (Br) or cyano (CN), respectively, using Bingel reactions is reported. The synthesized derivatives were used as the electron transporting materials (ETMs) in inverted perovskite solar cells (PSCs). Compared to devices fabricated with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), the new derivatives showed similar electrochemical properties and electron mobilities. However, PSCs based on the new derivatives synthesized in this work exhibited higher power conversion efficiencies (PCEs) than PC61BM based devices, which were ascribed to their better passivation ability, likely due to specific interactions between the fullerene addend and the perovskite layer surface. Devices based on the fullerene bearing the CN group exhibited an additionally improved efficiency due to the increased dielectric constant (ε r) of this derivative. These results show that the new functionalized fullerene derivatives can act as efficient ETMs in inverted PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...