Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 523, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627349

RESUMO

Trapped ions are a promising platform for the deployment of quantum technologies. However, traditional ion trap experiments tend to be bulky and environment-sensitive due to the use of free-space optics. Here we present a single-ion trap with integrated optical fibers directly embedded within the trap structure, to deliver laser light as well as to collect the ion's fluorescence. This eliminates the need for optical windows. We characterise the system's performance and measure the ion's fluorescence with signal-to-background ratios on the order of 50, which allows us to perform internal state readout measurements with a fidelity over 99% in 600 [Formula: see text]s. We test the system's resilience to thermal variations in the range between 22 and 53 [Formula: see text]C, and the system's vibration resilience at 34 Hz and 300 Hz and find no effect on its performance. The combination of compactness and robustness of our fiber-coupled trap makes it well suited for applications in, as well as outside, research laboratory environments, and in particular for highly compact portable quantum technologies, such as portable optical atomic clocks. While our system is designed for trapping 40Ca+ ions the fundamental design principles can be applied to other ion species.

2.
Nat Commun ; 5: 3376, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24572696

RESUMO

Coherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters. However, solid state quantum frequency conversion has not yet been achieved with long-lived optical quantum memories. Here we demonstrate an ultra-low-noise solid state photonic quantum interface suitable for connecting quantum memories based on atomic ensembles to the telecommunication fibre network. The interface is based on an integrated-waveguide nonlinear device. We convert heralded single photons at 780 nm from a rubidium-based quantum memory to the telecommunication wavelength of 1,552 nm, showing significant non-classical correlations between the converted photon and the heralding signal.


Assuntos
Fótons , Teoria Quântica , Rubídio/química , Telecomunicações/instrumentação , Algoritmos , Desenho de Equipamento , Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Modelos Teóricos
3.
Opt Express ; 21(17): 19473-87, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24105495

RESUMO

We report an experiment demonstrating quantum frequency conversion of weak light pulses compatible with atomic quantum memories to telecommunication wavelengths. We use a PPLN nonlinear waveguide to convert weak coherent states at the single photon level with a duration of 30 ns from a wavelength of 780 nm to 1552 nm. We measure a maximal waveguide internal (external) conversion efficiency η(int) = 0.41 (η(ext) = 0.25), and we show that the signal to noise ratio (SNR) is good enough to reduce the input photon number below 1. In addition, we show that the noise generated by the pump beam in the crystal is proportional to the spectral bandwidth of the device, suggesting that narrower filtering could significantly increase the SNR. Finally, we demonstrate that the quantum frequency converter can operate in the quantum regime by converting a time-bin qubit and measuring the qubit fidelity after conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...