Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surf Interface Anal ; 45(1): 134-137, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163486

RESUMO

The current limitation for SIMS analyses is insufficient secondary ion yields, due in part to the inefficiency of traditional primary ions. Massive gold clusters are shown to be a route to significant gains in secondary ion yields relative to other commonly used projectiles. At an impact energy of 520 keV, [Formula: see text] is capable of generating an average of greater than ten secondary ions per projectile, with some impact events generating >100 secondary ions. The capability of this projectile for signal enhancement is further displayed through the observation of up to seven deprotonated molecular ions from a single impact on a neat target of the model pentapeptide leu-enkephalin. Positive and negative spectra of leu-enkephalin reveal two distinct emission regimes responsible for the emission of either intact molecular ions with low internal energies or small fragment species. The internal energy distribution for this projectile is measured using a series of benzylpyridinium salts and compared with the small polyatomic projectile [Formula: see text] at 110 keV as well as distributions previously reported for electrospray ionization and fast atom bombardment. These results show that [Formula: see text] offers high secondary ion yields not only for small fragment ions, e.g. CN-, typically observed in SIMS analyses, but also for characteristic molecular ions. For the leu-enkephalin example, the yields for each of these species are greater than unity.

2.
Surf Interface Anal ; 45(1): 329-332, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163487

RESUMO

Secondary ion mass spectrometry (SIMS) applied in the event-by-event bombardment/detection mode is uniquely suited for the characterization of individual nano-objects. In this approach, nano-objects are examined one-by-one, allowing for the detection of variations in composition. The validity of the analysis depends upon the ability to physically isolate the nano-objects on a chemically inert support. This requirement can be realized by deposition of the nano-objects on a Nano-Assisted Laser Desorption/Ionization (NALDI™) plate. The featured nanostructured surface provides a support where nano-objects can be isolated if the deposition is performed at a proper concentration. We demonstrate the characterization of individual nano-objects on a NALDI™ plate for two different types of nanometric bacteriophages: Qß and M13. Scanning electron microscope (SEM) images verified that the integrity of the phages is preserved on the NALDI™ substrate. Mass spectrometric data show secondary ions from the phages are identified and resolved from those from the underlying substrate.

3.
Surf Interface Anal ; 45(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163488

RESUMO

The use of large cluster primary ions (e.g. C60, Au400) in secondary ion mass spectrometry has become prevalent in recent years due to their enhanced emission of secondary ions, in particular, molecular ions (MW ≤ 1500 Da). The co-emission of electrons with SIs was investigated per projectile impact. It has been found that SI and electrons yields increased with increasing projectile energy and size. The use of the emitted electrons from impacts of C60 for localization has been demonstrated for cholesterol deposited on a copper grid. The instrumentation, methodologies, and results from these experiments are presented.

4.
Surf Interface Anal ; 45(1)2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163489

RESUMO

This paper describes the application of nanoparticle bombardment with time-of-flight secondary ion mass spectrometry (NP-ToF-SIMS) for the analysis of native biological surfaces for the case of sagittal sections of mammalian brain tissue. The use of high energy, single nanoparticle impacts (e.g. 520 keV Au400) permits desorption of intact lipid molecular ions, with enhanced molecular ion yield and reduced fragmentation. When coupled with complementary molecular ion fragmentation and exact mass measurement analysis, high energy nanoparticle probes (e.g. 520 keV Au400 NP) provide a powerful tool for the analysis of the lipid components from native brain sections without the need for surface preparation and with ultimate spatial resolution limited to the desorption volume per impact (~103 nm3).

5.
Nucl Instrum Methods Phys Res B ; 273: 270-273, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22393269

RESUMO

This paper describes the advantages of using single impacts of large cluster projectiles (e.g. C(60) and Au(400)) for surface mapping and characterization. The analysis of co-emitted time-resolved photon spectra, electron distributions and characteristic secondary ions shows that they can be used as surface fingerprints for target composition, morphology and structure. Photon, electron and secondary ion emission increases with the projectile cluster size and energy. The observed, high abundant secondary ion emission makes cluster projectiles good candidates for surface mapping of atomic and fragment ions (e.g., yield >1 per nominal mass) and molecular ions (e.g., few tens of percent in the 500 < m/z < 1500 range).

6.
Surf Interface Anal ; 43(1-2): 53-57, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21603128

RESUMO

First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

7.
Rev Sci Instrum ; 82(12): 126106, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225261

RESUMO

The integration of a trapped ion mobility spectrometer (TIMS) with a mass spectrometer (MS) for complementary fast, gas-phase mobility separation prior to mass analysis (TIMS-MS) is described. The ion transmission and mobility separation are discussed as a function of the ion source condition, bath gas velocity, analysis scan speed, RF ion confinement, and downstream ion optical conditions. TIMS mobility resolution depends on the analysis scan speed and the bath gas velocity, with the unique advantage that the IMS separation can be easily tuned from high speed (~25 ms) for rapid analysis to slower scans for higher mobility resolution (R > 80).


Assuntos
Espectrometria de Massas/métodos , Integração de Sistemas , Espectrometria de Massas/instrumentação , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo
8.
J Phys Chem Lett ; 1(24): 3510-3513, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21218166

RESUMO

This paper presents the first observation of coincidental emission of photons, electrons and secondary ions from individual C(60) keV impacts. An increase in photon, electron and secondary ion yields is observed as a function of C(60) projectile energy. The effect of target structure/composition on photon and electron emissions at the nanometer level is shown for a CsI target. The time-resolved photon emission may be characterized by a fast component emission in the UV-Vis range with a short decay time, while the electron and secondary ion emission follow a Poisson distribution.

9.
J Phys Chem A ; 113(29): 8221-34, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19569657

RESUMO

A new approach is described for the elucidation of gas-phase peptide ion structures combining ion mobility spectrometry (IMS) data and molecular dynamics (MD)-cluster analysis (CA) prediction. The new approach is based on the determination of the gas-phase ion structure identity vectors (e.g., structure and population vectors) that generate the total conformational space of the gas-phase ion as a function of the IMS experimental conditions (e.g., field strength, pressure, bath gas temperature, and IM cell geometry). Two methods to efficiently sample the gas-phase conformational space of molecular ions as a function of the effective ion temperature characteristic of the IMS experiments are described: (i) a simulated annealing MD-CA-constant temperature MD-CA, and (ii) a generalized non-Boltzmann sampling MD-free energy analysis-CA. The new theoretical method has been successfully applied to two model peptide ions (Bradykinin fragments 1-5 and 1-8, RPPGF and RPPGFSPF, respectively) for which multiple conformations sensitive to the effective ion temperature have been suggested in previous studies.


Assuntos
Modelos Moleculares , Movimento (Física) , Sequência de Aminoácidos , Bradicinina/química , Análise por Conglomerados , Gases/química , Fragmentos de Peptídeos/química , Pressão , Conformação Proteica , Análise Espectral , Temperatura , Termodinâmica
10.
J Phys Chem A ; 113(9): 1813-21, 2009 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19206223

RESUMO

The positive and neutral clusters produced by the impact of approximately 60 MeV (252)Cf fission fragments on a LiF polycrystalline target are analyzed. The positive ion spectrum is dominated by the (LiF)(n)Li(+) series, n = 0-7, exhibiting a total yield 2 orders of magnitude higher than that of the (LiF)(n)(+) series. The yield for the dominant (LiF)(n)Li(+) series decreases roughly as exp(-kn), where k approximately 0.9 for n = 0-3 and k approximately 0.6 for the heavier clusters (n = 4-9), while the yield of the (LiF)(n)(+) series also decreases exponentially as n increases with k approximately 0.6. Theoretical calculations were performed for the (LiF)(n)Li(0), (LiF)(n)Li(+), and (LiF)(n)(0) series for n up to 9. For the smaller clusters the structures first obtained with a genetic algorithm generator were further optimized at the DFT/B3LYP/6-311+G(3df), DFT/B3LYP/LACV3P*, and MP2/LACV3P* levels of theory. An energy criterion is used for a proper taxonomic description of the optimized cluster isomers. Cluster properties such as fragmentation energy and stability are discussed for the proposed configurations. The results show that for all three series the most stable isomers present a linear structure for small cluster size (n = 1-3), while cubic cells or polyhedral structures are preferred for larger cluster sizes (n = 4-9). Fragmentation energy results suggest that a desorbed excited (LiF)(n)Li(+) ion preferentially dissociates via a cascade of (LiF)(n)(0) units, in agreement with the slope modification in the exponential decay of the (LiF)(n)Li(+) ion abundances for n > or = 3.

11.
J Phys Chem A ; 112(44): 11061-6, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18841946

RESUMO

Collision cross-sections of gas-phase (CsI)n = (1-7)Cs(+) cluster ions formed by pulsed-UV laser (355 nm) desorption ionization are measured by ion mobility-mass spectrometry. Experimental collision cross-sections are compared with calculated cross sections of candidate structures generated from a search for the lowest energy structures at the DFT/B3LYP/LACV3P** and MP2/LACVP3P** levels. The relative stabilities of these candidate structures are examined by IM-CID-MS, and the experimental results are compared to theoretical predictions. Analysis of (CsI)n = (1-7)Cs(+) cluster ion dissociation energies shows that the lower fragmentation thresholds are observed for cluster ions with the lower predicted stability.

12.
J Mass Spectrom ; 43(5): 587-93, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18095386

RESUMO

Time of flight-mass spectrometry (TOF-MS) is used to analyze positive and negative desorbed ions generated by UV laser ablation of several alkali (X) halide (Y) salts. Most of the observed desorbed cluster ions have the structure (XY)(n)X(+) or (XY)(n)Y(-). Their desorption yields decrease as exp(-kn), where k approximately 2 for both series, suggesting that the neutral component (XY)(n) plays the dominant role in the desorption process. Mass spectrum measurements were performed for compound samples in which two salts (out of CsI, RbI, KBr, KCl and KI) are homogeneously mixed or disposed in two superposed layers. The detection of small new ion species and large cluster ions of the original salts supports the scenario that the uppermost layers are completely atomized while deep layers are emitted colder and fragmented: It is proposed that ns-pulsed laser induced desorption of ionic salts occurs via two sequential mechanisms: (1) ejection of cations and anions in the hot plume, followed by recombination into new cluster ions and (2) ejection of relatively cold preformed species originated from deep layers or from periphery of the irradiated region.

13.
J Colloid Interface Sci ; 311(1): 253-61, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17383669

RESUMO

Ionising radiation used for sterilization can have an effect on the physicochemical properties of pharmaceutically relevant excipient systems, affecting therefore the stability of the formulation. The effect of gamma irradiation on the phase behaviour (cloud point--CP) and critical micelle concentration (CMC) of aqueous solutions of Triton X-100, used as a model nonionic surfactant, is investigated in this paper. Micellar solutions were irradiated with gamma-rays in a dose range between 0 and 70 kGy, including the sterilization range of pharmaceutical preparations. The decreased observed in CP and CMC values of micellar solutions at all absorbed doses was explained in terms of changes in molecular mass distribution of ethoxylated surfactant and the formation of cross-linked species. These results were complemented by mass spectrometry, UV-vis and NMR spectroscopy. Although the findings indicate degradation of polyethoxylated chains by water radical attacks, there was no spectroscopic evidence of radiation damage to aromatic ring or hydrocarbon tail of surfactant. Models based on Flory-Huggins theory were employed to estimate CP from changes in mass distribution and to obtain cross-linking fractions. Surface tension measurements of non-irradiated and irradiated solutions were used for estimating the effectiveness and efficiency of surfactant in the formulation.


Assuntos
Raios gama , Micelas , Octoxinol/química , Octoxinol/efeitos da radiação , Transição de Fase/efeitos da radiação , Soluções/química , Soluções/efeitos da radiação , Propriedades de Superfície , Água/química
14.
J Phys Chem A ; 110(33): 10018-24, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913675

RESUMO

Positive and negatively charged ammonia clusters produced by the impact of (252)Cf fission fragments (FF) on an NH(3) ice target have been examined theoretical and experimentally. The ammonia clusters generated by (252)Cf FF show an exponential dependence of the cluster population on its mass, and the desorption yields for the positive (NH(3))(n)NH(4)(+) clusters are 1 order of magnitude higher than those for the negative (NH(3))(n)NH(2)(-) clusters. The experimental population analysis of (NH(3))(n)NH(4)(+) (n = 0-18) and (NH(3))(n)NH(2)(-) (n = 0-8) cluster series show a special stability at n = 4 and 16 and n = 2, 4, and 6, respectively. DFT/B3LYP calculations of the (NH(3))(0)(-)(8)NH(4)(+) clusters show that the structures of the more stable conformers follow a clear pattern: each additional NH(3) group makes a new hydrogen bond with one of the hydrogen atoms of an NH(3) unit already bound to the NH(4)(+) core. For the (NH(3))(0)(-)(8)NH(2)(-) clusters, the DFT/B3LYP calculations show that, within the calculation error, the more stable conformers follow a clear pattern for n = 1-6: each additional NH(3) group makes a new hydrogen bond to the NH(2)(-) core. For n = 7 and 8, the additional NH(3) groups bind to other NH(3) groups, probably because of the saturation of the NH(2)(-) core. Similar results were obtained at the MP2 level of calculation. A stability analysis was performed using the commonly defined stability function E(n)(-)(1) + E(n)(+1) - 2E(n), where E is the total energy of the cluster, including the zero point correction energy (E = E(t) + ZPE). The trend on the relative stability of the clusters presents an excellent agreement with the distribution of experimental cluster abundances. Moreover, the stability analysis predicts that the (NH(3))(4)NH(4)(+) and the even negative clusters [(NH(3))(n)NH(2)(-), n = 2, 4, and 6] should be the most stable ones, in perfect agreement with the experimental results.

15.
Phys Chem Chem Phys ; 7(9): 1971-6, 2005 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19787901

RESUMO

(CsI)nCs+ (n = 1,2) cluster ion formation from polycrystalline CsI irradiated by pulsed-UV laser (337 nm) is analyzed by delayed extraction time-of-flight mass spectrometry technique. Measurements were performed for different laser intensities and for several delayed extraction times. Experimental data show that CsI laser ablation produces the emission of (CsI),Cs+ ions (n = 0, 1, 2), whose yields decrease exponentially with n and increase exponentially with the laser pulse energy. A quasi equilibrium evolution of the clusters is proposed to extract a parameter characteristic of the cluster recombination process. The delayed extraction method of initial velocity determination was improved to take into account collisions in the high density plasma close to the target. The new parameterization helps to describe the dynamics of secondary ions of different masses for laser irradiances above the ion desorption threshold in a collision regime. The initial velocity of the secondary ions [(CsI)nCs+ (n = 0, 1, 2)] as function of the laser irradiance was determined. The distance to the target when the free expansion process starts is reported as function of the secondary ions mass and of the laser irradiance. The collision regime's influence on the secondary ion dynamics is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...