Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102663, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559387

RESUMO

Numerous protocols for dissolved organic carbon (DOC) measurements on natural water are used in the literature. An ISO protocol for the determination of DOC exists since 2018, but it is certified for DOC values ≥ 1 mg L-1, while many publications report DOC values much lower. In addition, this ISO protocol does not include indications on vials cleaning, filtering material, and type of caps and septa to be used. The purpose of this study was to evaluate protocols for measurements of low DOC concentrations (≤ 1 mg L-1). The effect of the sample container, type of septum, filtration material, nature of acid used for storage, and matrix effects on DOC concentration were evaluated.•The use of glass vials decontaminated at 450 °C or 500 °C for at least 1 h, 0.45 µm hydrophilic polytetrafluoroethylene (PTFE) membranes previously rinsed with 20 mL ultra-pure water and HCl acidification gives the lowest DOC contamination,•Sulfides (ΣH2S), sodium (Na+) or calcium (Ca2+) do not induce high matrix effect for the analysis (≤ 10%),•At low DOC concentrations (≤ 1 mg L-1), the use of pierced PTFE septa with acidified samples induce slight DOC contamination after storage at 4 °C, and dramatic contamination after storage at -18 °C.

2.
J Appl Crystallogr ; 56(Pt 3): 660-672, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284277

RESUMO

The mechanism of hydration of calcium sulfate hemihydrate (CaSO4·0.5H2O) to form gypsum (CaSO4·2H2O) was studied by combining scanning 3D X-ray diffraction (s3DXRD) and phase contrast tomography (PCT) to determine in situ the spatial and crystallographic relationship between these two phases. From s3DXRD measurements, the crystallographic structure, orientation and position of the crystalline grains in the sample during the hydration reaction were obtained, while the PCT reconstructions allowed visualization of the 3D shapes of the crystals during the reaction. This multi-scale study unfolds structural and morphological evidence of the dissolution-precipitation process of the gypsum plaster system, providing insights into the reactivity of specific crystallographic facets of the hemihydrate. In this work, epitaxial growth of gypsum crystals on the hemihydrate grains was not observed.

3.
J Environ Manage ; 341: 117997, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141722

RESUMO

Contaminant removal from (waste)waters by magnetite is a promising technology. In the present experimental study, a magnetite recycled from the steel industry waste (zero-valent iron powder) was used to investigate the sorption of As, Sb and U in phosphate-free and -rich suspensions, i.e. as a remediation for the acidic phosphogypsum leachates derived from the phosphate fertilizer industry. The results showed up to 98% U removal under controlled pH conditions, while phosphate did not hinder this immobilisation. In contrast, the results confirmed the limited uptake of As and Sb oxyanions by magnetite in presence of phosphate as the competing anion, displaying only 7-11% removal, compared to 83-87% in the phosphate-free sorption experiments. To limit this wastewater problem, raw ZVI anaerobic oxidation was examined as mechanism to increase the pH and as a source of Fe2+ in a first step, and in a second step to remove phosphate via vivianite precipitation, therefore prior to the reaction with magnetite. UV-Vis, XRD and SEM-EDS showed that vivianite precipitation is feasible at pH > 4.5, mainly depending on the phosphate concentration. The higher the [PO43-], the lower is the pH at which vivianite precipitates and the higher the % removal of phosphate from solution. It is anticipated that an optimum 3-steps design with separate reactors controlling the conditions of ZVI oxidation, followed by vivianite precipitation and finally, reaction with magnetite, can achieve high contaminant uptake in field applications.


Assuntos
Óxido Ferroso-Férrico , Poluentes Químicos da Água , Ferro , Compostos Ferrosos , Águas Residuárias
4.
J Colloid Interface Sci ; 642: 747-756, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37037080

RESUMO

HYPOTHESIS: The wettability of carbonate rocks is expected to be affected by the organic components of biominerals which are complex, nanostructured organo-mineral assemblages. Elucidating the nanoscale mechanisms driving the wettability of solid surfaces will enable a better understanding of the role of biominerals in the wetting properties of carbonate rocks to control various geological, environmental and industrial processes. EXPERIMENTS: Using Atomic Force Microscopy and Spectroscopy (AFM/AFS) we probed the wettability properties of carbonate rocks with different amounts of organic material. The adhesion properties of two types of limestones were determined in liquid environments at different length scales (nm to mm) using functionalized tips with different chemical groups to determine the extent of surface hydrophobic and hydrophilic organo-mineral interactions. FINDINGS: We observed homogeneous hydrophobic areas at length scales below < 5 µm. The origin of this hydrophobicity is linked to the presence of organics, whose amount and spatial distribution depend on the rock composition. Specifically, our results reveal that the biogenic vs non-biogenic origin of the mineral grains is the main rock property controlling the wettability of the solid surface. Overall, our methodology offers a multi-scale approach to unravel the role that organic moieties and biominerals play in controlling the wettability of rock-water interfaces.

5.
Nat Commun ; 13(1): 7676, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509763

RESUMO

Soil carbon dynamics is strongly controlled by depth globally, with increasingly slow dynamics found at depth. The mechanistic basis remains however controversial, limiting our ability to predict carbon cycle-climate feedbacks. Here we combine radiocarbon and thermal analyses with long-term incubations in absence/presence of continuously 13C/14C-labelled plants to show that bioenergetic constraints of decomposers consistently drive the depth-dependency of soil carbon dynamics over a range of mineral reactivity contexts. The slow dynamics of subsoil carbon is tightly related to both its low energy density and high activation energy of decomposition, leading to an unfavourable 'return-on-energy-investment' for decomposers. We also observe strong acceleration of millennia-old subsoil carbon decomposition induced by roots ('rhizosphere priming'), showing that sufficient supply of energy by roots is able to alleviate the strong energy limitation of decomposition. These findings demonstrate that subsoil carbon persistence results from its poor energy quality together with the lack of energy supply by roots due to their low density at depth.


Assuntos
Carbono , Solo , Ciclo do Carbono , Agricultura , Rizosfera , Microbiologia do Solo
6.
Environ Sci Technol ; 56(23): 16831-16837, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394535

RESUMO

Nanosized zinc sulfides (nano-ZnS) have size-dependent and tunable physical and chemical properties that make them useful for a variety of technological applications. For example, structural changes, especially caused by strain, are pronounced in nano-ZnS < 5 nm in size, the size range typical of incidental nano-ZnS that form in the environment. Previous research has shown how natural organic matter impacts the physical properties of nano-ZnS but was mostly focused on their aggregation state. However, the specific organic molecules and the type of functional groups that are most important for controlling the nano-ZnS size and strain remain unclear. This study examined the size-dependent strain of nano-ZnS synthesized in the presence of serine, cysteine, glutathione, histidine, and acetate. Synchrotron total scattering pair distribution function analysis was used to determine the average crystallite size and strain. Among the different organic molecules tested, those containing a thiol group were shown to affect the particle size and size-induced strain most strongly when added during synthesis but significantly reduced the particle strain when added to as-formed nano-ZnS. The same effects are useful to understand the properties and behavior of natural nano-ZnS formed as products of microbial activity, for example, in reducing environments, or of incidental nano-ZnS formed in organic wastes.


Assuntos
Nanopartículas , Compostos de Zinco , Compostos de Zinco/análise , Compostos de Zinco/química , Sulfetos/química , Nanopartículas/química , Tamanho da Partícula
7.
Environ Sci Technol ; 56(20): 14817-14827, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36184803

RESUMO

The mobility of 79Se, a fission product of 235U and long-lived radioisotope, is an important parameter in the safety assessment of radioactive nuclear waste disposal systems. Nonradioactive selenium is also an important contaminant of drainage waters from black shale mountains and coal mines. Highly mobile and soluble in its high oxidation states, selenate (Se(VI)O42-) and selenite (Se(IV)O32-) oxyanions can interact with magnetite, a mineral present in anoxic natural environments and in steel corrosion products, thereby being reduced and consequently immobilized by forming low-solubility solids. Here, we investigated the sorption and reduction capacity of synthetic nanomagnetite toward Se(VI) at neutral and acidic pH, under reducing, oxygen-free conditions. The additional presence of Fe(II)aq, released during magnetite dissolution at pH 5, has an effect on the reduction kinetics. X-ray absorption spectroscopy analyses revealed that, at pH 5, trigonal gray Se(0) formed and that sorbed Se(IV) complexes remained on the nanoparticle surface during longer reaction times. The Se(0) nanowires grew during the reaction, which points to a complex transport mechanism of reduced species or to active reduction sites at the tip of the Se(0) nanowires. The concomitant uptake of aqueous Fe(II) and Se(VI) ions is interpreted as a consequence of small pH oscillations that result from the Se(VI) reduction, leading to a re-adsorption of aqueous Fe(II) onto the magnetite, renewing its reducing capacity. This effect is not observed at pH 7, where we observed only the formation of Se(0) with slow kinetics due to the formation of an oxidized maghemite layer. This indicates that the presence of aqueous Fe(II) may be an important factor to be considered when examining the environmental reactivity of magnetite.


Assuntos
Nanofios , Resíduos Radioativos , Compostos de Selênio , Selênio , Adsorção , Carvão Mineral , Óxido Ferroso-Férrico/química , Oxirredução , Ácido Selênico , Ácido Selenioso/química , Selênio/química , Aço
8.
Environ Sci Process Impacts ; 24(9): 1383-1391, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35838030

RESUMO

Schwertmannite is a common nanomineral in acid sulfate environments such as Acid Mine Drainage (AMD) and Acid Sulfate Soils (ASS). Its high surface area and positively charged surface result in a strong affinity towards toxic oxyanions such as arsenate in solution. However, natural precipitation of schwertmannite also involves the accumulation of other impurities, in particular aluminum, an element that is often incorporated into the structure of Fe-oxide minerals, such as goethite and ferrihydrite, affecting their structural and surface properties. However, little is known about the effect of Al incorporation in schwertmannite on the removal capacity of toxic oxyanions found in AMD and ASS (e.g. arsenate). In this paper, schwertmannite samples with variable Al concentration were synthetized and employed in arsenate adsorption isotherm experiments at a constant pH of 3.5. Solid samples before and after arsenate adsorption were characterized using high energy X-ray diffraction and pair distribution function analyses in order to identify structural differences correlated with the Al content as well as variations in the coordination of arsenate adsorbed on the mineral surface. These analyses showed limited Al accumulation on schwertmannite (up to 5%) with a low effect on its structure. The maximum arsenate sorption capacity (258 mmolH2AsO4 molFe-1) was in the range of that with pure schwertmannite, but a higher proportion of inner-sphere coordination was observed. Finally, Al was found to desorb from schwertmannite, with adsorbed arsenate preventing this effect and increasing the stability of the mineral. These results are useful to interpret observations from the field, in particular from river water affected by AMD and ASS, where similar conditions are observed, and where aluminum incorporation is expected.


Assuntos
Arseniatos , Compostos de Ferro , Adsorção , Alumínio , Arseniatos/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Minerais/química , Óxidos , Solo , Sulfatos/química , Propriedades de Superfície , Água
9.
J Phys Chem C Nanomater Interfaces ; 126(38): 16447-16460, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37881644

RESUMO

The stability of adsorbed water films on mineral surfaces has far-reaching implications in the Earth, environmental, and materials sciences. Here, we use the basal plane of phlogopite mica, an atomically smooth surface of a natural mineral, to investigate water film structure and stability as a function of two features that modulate surface hydrophilicity: the type of adsorbed counterions (Na, K, and Cs) and the substitution of structural OH groups by F atoms. We use molecular dynamics simulations combined with in situ high-resolution X-ray reflectivity to examine surface hydration over a range of water loadings, from the adsorption of isolated water molecules to the formation of clusters and films. We identify four regimes characterized by distinct adsorption energetics and different sensitivities to cation type and mineral fluorination: from 0 to 0.5 monolayer film thickness, the hydration of adsorbed ions; from 0.5 to 1 monolayer, the hydration of uncharged regions of the siloxane surface; from 1 to 1.5 monolayer, the attachment of isolated water molecules on the surface of the first monolayer; and for >1.5 monolayer, the formation of an incipient electrical double layer at the mineral-water interface.

10.
Environ Sci Technol ; 55(5): 3021-3031, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33606515

RESUMO

The reactivity of iron(II/III) oxide surfaces may be influenced by their interaction with silica, which is ubiquitous in aquatic systems. Understanding the structure-reactivity relationships of Si-coated mineral surfaces is necessary to describe the complex surface behavior of nanoscale iron oxides. Here, we use Si-adsorption isotherms and Fourier transform infrared spectroscopy to analyze the sorption and polymerization of silica on slightly oxidized magnetite nanoparticles (15% maghemite and 85% magnetite, i.e., ∼2 maghemite surface layers), showing that Si adsorption follows a Langmuir isotherm up to 2 mM dissolved Si, where surface polymerization occurs. Furthermore, the effects of silica surface coatings on the redox-catalytic ability of magnetite are analyzed using selenium as a molecular probe. The results show that for partially oxidized nanoparticles and even under different Si surface coverages, electron transfer is still occurring. The results indicate anion exchange between silicate and the sorbed SeIV and SeVI. X-ray absorption near-edge structure analyses of the reacted Se indicate the formation of a mixed selenite/Se0 surface phase. We conclude that neither partial oxidation nor silica surface coatings block the sorption and redox-catalytic properties of magnetite nanoparticles, a result with important implications to assess the reactivity of mixed-valence phases in environmental settings.


Assuntos
Óxido Ferroso-Férrico , Selênio , Adsorção , Catálise , Compostos Férricos , Oxirredução , Dióxido de Silício
11.
ACS Omega ; 6(2): 1316-1327, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490791

RESUMO

Silver nanoparticles (Ag-NPs) adhered/inserted on textile fibers have an effective antimicrobial role. However, their release due to low adherence and their fate in the natural settings have been questioned in terms of toxicity level. In order to overcome this recurrent problem of adherence, the in situ formation of Ag-NPs in five textile fibers (cotton (untreated and chemically bleached), sheep's wool, polyamide, and polyester) was assessed. Herein, the fibers were first immersed in a silver ion solution (1 g/L of AgNO3) for ion saturation at room T for 24 h followed by draining fibers and their reimmersion this time in a strong chemical reducing solution (0.25 g/L of NaBH4) at room T for 24 h. This latter step leads to the in situ formation of Ag-NPs where size (5 nm < size < 50 nm), surface covering concentration, and aggregation degree depend on the textile fiber kind as deduced from FESEM images. This simple lab chemical method allows instantaneous in situ formation of Ag-NPs onto fibers without the requirement of additional thermal treatment. Moreover, for natural fibers, the formation of Ag-NPs inside of them is also expected as confirmed from FESEM images in cotton cross sections. In complement, all textile fibers containing Ag-NPs (sheep's wool 10 mg/g > untreated cotton 2.3 mg/g > bleached cotton 1 mg/g > polyamide 0.62 mg/g > polyester 0.28 mg/g) were submitted to interact with strong oxidants in an aqueous media (7.5% v/v of H2O2, 0.5 and 0.05 M of HNO3 and ultrapure water as the control) using flow-through reactor experiments. Here, breakthrough curves reveal that the oxidative dissolution rate (given in mol/g min) of adhered Ag-NPs (ionic release) depends strongly on fiber nature, and nature and concentration of oxidant solution. In summary, this fundamental study suggests that Ag-NPs may be successfully adhered/inserted in natural fibers (wool and cotton) in a safety-design perspective with performant biocide properties as confirmed by using Bacillus subtilis.

12.
Environ Sci Technol ; 54(13): 8104-8114, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32469204

RESUMO

Pyrite plays a significant role in governing the mobility of toxic uranium in an anaerobic environment via an oxidation-reduction process occurring at the mineral-water interface, but the factors influencing the reaction kinetics remain poorly understood. In this study, natural pyrites with different impurities (Pb, As, and Si) and different surface pretreatments were used to react with aqueous U(VI) from pH ∼3.0 to ∼9.5. Both aqueous and solid results indicated that freshly crushed pyrites, which do have more surface Fe2+/Fe3+ and S2- sites that were generated from breakage of Fe(S)-S bonds during ball milling, exhibited a much stronger reactivity than those treated with acid washing. Besides, U(VI) reduction which involves the possible intermediate U(V) and the formation of hyperstoichiometric UO2+x(s) was found to preferentially occur at Pb- and As-rich spots on the pyrite surface, suggesting that the incorporated impurities could act as reactive sites because of the generation of lattice defects and galena- and arsenopyrite-like local configurations. These reactive surface sites can be removed by acid washing, leaving a pyrite surface nearly inert toward aqueous U(VI). Thus, reactivity of pyrite toward U(VI) is largely governed by its surface compositions, which provides an insight into the chemical behavior of both pyrite and uranium in various environments.


Assuntos
Ferro , Urânio , Oxirredução , Sulfetos , Água
13.
Environ Sci Technol ; 54(4): 2344-2352, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31971374

RESUMO

Reinforced cementitious structures in nuclear waste repositories will act as barriers that limit the mobility of radionuclides (RNs) in case of eventual leakage. CEM-V/A cement, a ternary blended cement with blast furnace slag (BFS) and fly ash (FA), could be qualified and used in nuclear waste disposal. Chemical interactions between the cement and RNs are critical but not completely understood. Here, we combined wet chemistry methods, synchrotron-based X-ray techniques, and thermodynamic modeling to explore redox interactions and nonredox sorption processes in simulated steel-reinforced CEM-V/A hydration systems using selenite as a molecular probe. Among all of the steel corrosion products analyzed, only the addition of Fe0 can obviously enhance the reducing ability of cement toward selenite. In comparison, steel corrosion products showed stronger reducing power in the absence of cement hydrates. Selenium K-edge X-ray absorption spectroscopy (XAS) revealed that selenite immobilization mechanisms included nonredox inner-/outer-sphere complexations and reductive precipitations of FeSe and/or Se(0). Importantly, the hydrated pristine cement showed a good reducing ability, driven by ferrous phases and (bi)sulfides (as shown by sulfur K-edge XAS) originated from BFS and FA. The overall redox potential imposed by hydrated CEM-V/A was determined, hinting to a redox shift in underground cementitious structures.


Assuntos
Materiais de Construção , Aço , Corrosão , Oxirredução , Ácido Selenioso
14.
Chemosphere ; 242: 125174, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31675582

RESUMO

Salt marshes are natural deposits of heavy metals in estuarine systems, where sulphide precipitation associated with redox changes often results in a natural attenuation of contamination. In the present study, we focus on the effects of variable redox conditions imposed to a highly-polluted phosphogypsum stack that is directly piled over the salt marsh soil in the Tinto River estuary (Huelva, Spain). The behaviour of contaminants is evaluated in the phosphogypsum waste and in the marsh basement, separately, in controlled, experimentally-induced oscillating redox conditions. The results revealed that Fe, and to a lesser extent S, control most precipitation/dissolution processes. Ferric iron precipitates in the form of phosphates and oxyhydroxides, while metal sulphide precipitation is insignificant and appears to be prevented by the abundant formation of Fe phosphates. An antagonistic evolution with changing redox conditions was observed for the remaining contaminants such as Zn, As, Cd and U, which remained mobile in solution during most of experimental run. Therefore, these findings revealed that high concentrations of phosphates inhibit the typical processes of immobilisation of pollutants in salt-marshes which highlights the elevated contaminant potential of phosphogypsum wastes on coastal environments.


Assuntos
Sulfato de Cálcio/química , Estuários , Oxirredução , Fósforo/química , Monitoramento Ambiental/métodos , Ferro/química , Metais Pesados/análise , Fosfatos/química , Rios , Espanha , Poluentes Químicos da Água/análise , Áreas Alagadas
15.
Environ Sci Technol ; 53(19): 11153-11161, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436961

RESUMO

Yttrium belongs to the rare earth elements (REEs) together with lanthanides and scandium. REEs are commonly used in modern technologies, and their limited supply has made it necessary to look for new alternative resources. Acid mine drainage (AMD) is a potential resource since it is moderately enriched in REEs. In fact, in passive remediation systems, which are implemented to minimize the environmental impacts of AMD, REEs are mainly retained in basaluminite, an aluminum hydroxysulfate precipitate. In this study, the solid and liquid speciation and the local structure of yttrium are studied in high-sulfate aqueous solutions, basaluminite standards, and samples from remediation columns using synchrotron-based techniques and molecular modeling. Pair distribution function (PDF) analyses and ab initio molecular dynamics density functional theory models of the yttrium sulfate solution show that the YSO4+ ion pair forms a monodentate inner-sphere complex. Extended X-ray absorption fine structure (EXAFS) and PDF analyses show that Y is retained by basaluminite, forming a monodentate inner-sphere surface complex on the aluminum hydroxide surface. EXAFS of the column samples shows that more than 72% of their signal is represented by the signal of basaluminite with which YSO4+ forms an inner-sphere complex. The atomic view of the REE configuration in AMD environments could facilitate a deeper research of REE recovery from waste generated in AMD remediation systems.


Assuntos
Metais Terras Raras , Poluentes Químicos da Água , Ácidos , Mineração , Ítrio
16.
Environ Sci Technol ; 52(20): 11931-11940, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30211548

RESUMO

The redox potential (Eh) in a cementitious nuclear waste repository is critical to the retardation behavior of redox-sensitive radionuclides (RNs), and largely controlled by embedded steel corrosion but hard to be determined experimentally. Here, we propose an innovative Eh determination method based on chemical/spectroscopic measurements. Oxidized nuclides (UVI, SeIV, MoVI, and SbV) were employed as species probes to detect the Eh values imposed by steel (Fe0) and steel corrosion products (magnetite/hematite, and magnetite/goethite couples) in cement pore water. Nuclides showed good sorption affinity, especially toward Fe0, in decreasing Kd order for U > Sb > Se > Mo under both N2 and H2 atmospheres. The reduced nuclide species were identified as UO2, U4O9, FeSe, FeSe2, Se0, Sb0, and Sb2O3, but no redox transformation occurred for Mo. Eh values were obtained by using the Nernst equation. Remarkably, their values fell in a small range centered around -456 mV at pH ∼ 13.5 for both Fe0 and Fe-oxyhydroxides couples. This Eh value appears to be controlled by the nanocrystalline Fe(OH)2/Fe(OH)3 or (Fe1- x,Ca x)(OH)2/Fe(OH)3 couple, whose presence was confirmed by pair distribution function analyses. This approach could pave the way for describing the Eh gradient in reinforced concrete where traditional Eh measurements are not feasible.


Assuntos
Resíduos Radioativos , Aço , Corrosão , Óxido Ferroso-Férrico , Oxirredução
17.
Phys Chem Chem Phys ; 20(20): 13825-13835, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29745416

RESUMO

Can we control the crystallization of solid CaCO3 from supersaturated aqueous solutions and thus mimic a natural process predicted to occur in living organisms that produce biominerals? Here we show how we achieved this by confining the reaction between Ca2+ and CO32- ions to the environment of nanosized water cores of water-in-oil microemulsions, in which the reaction between the ions is controlled by the intermicellar exchange processes. Using a combination of in situ small-angle X-ray scattering, high-energy X-ray diffraction, and low-dose liquid-cell scanning transmission electron microscopy, we elucidate how the presence of micellar interfaces leads to the formation of a solute CaCO3 phase/species that can be stabilized for extended periods of time inside micellar water nano-droplets. The nucleation and growth of any solid CaCO3 polymorph, including the amorphous phase, from such nano-droplets is prevented despite the fact that the water cores in the used microemulsion are highly supersaturated with respect to all known calcium carbonate solid phases. On the other hand the presence of the solute CaCO3 phase inside of the water cores decreases the rigidity of the micellar surfactant/water interface, which promotes the aggregation of micelles and the formation of large (>2 µm in diameter) globules. The actual precipitation and crystallization of solid CaCO3 could be triggered "on-demand" through the targeted removal of the organic-inorganic interface and hence the destabilization of globules carrying the CaCO3 solute.

18.
IUCrJ ; 5(Pt 2): 150-157, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765604

RESUMO

To understand the main properties of cement, a ubiquitous material, a sound description of its chemistry and mineralogy, including its reactivity in aggressive environments and its mechanical properties, is vital. In particular, the porosity distribution and associated sample carbonation, both of which affect cement's properties and durability, should be quantified accurately, and their kinetics and mechanisms of formation known both in detail and in situ. However, traditional methods of cement mineralogy analysis (e.g. chemical mapping) involve sample preparation (e.g. slicing) that can be destructive and/or expose cement to the atmosphere, leading to preparation artefacts (e.g. dehydration). In addition, the kinetics of mineralogical development during hydration, and associated porosity development, cannot be examined. To circumvent these issues, X-ray diffraction computed tomography (XRD-CT) has been used. This allowed the mineralogy of ternary blended cement composed of clinker, fly ash and blast furnace slag to be deciphered. Consistent with previous results obtained for both powdered samples and dilute systems, it was possible, using a consolidated cement paste (with a water-to-solid ratio akin to that used in civil engineering), to determine that the mineralogy consists of alite (only detected in the in situ hydration experiment), calcite, calcium silicate hydrates (C-S-H), ettringite, mullite, portlandite, and an amorphous fraction of unreacted slag and fly ash. Mineralogical evolution during the first hydration steps indicated fast ferrite reactivity. Insights were also gained into how the cement porosity evolves over time and into associated spatially and time-resolved carbonation mechanisms. It was observed that macroporosity developed in less than 30 h of hydration, with pore sizes reaching about 100-150 µm in width. Carbonation was not observed for this time scale, but was found to affect the first 100 µm of cement located around macropores in a sample cured for six months. Regarding this carbonation, the only mineral detected was calcite.

19.
Cryst Growth Des ; 18(12): 7391-7400, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32280310

RESUMO

Although amelogenin comprises the vast majority of the matrix that templates calcium phosphate nucleation during enamel formation, other proteins, particularly enamelin, are also known to play an important role in the formation of enamel's intricate architecture. However, there is little understanding of the interplay between amelogenin and enamelin in controlling processes of mineral nucleation and growth. Here, we used an in vitro model to investigate the impact of enamelin interaction with amelogenin on calcium phosphate nucleation for a range of enamelin-to-amelogenin ratios. We found that amelogenin alone is a weak promoter of nucleation, but addition of enamelin enhanced nucleation rates in a highly nonlinear, nonmonotonic manner reaching a sharp maximum at a ratio of 1:50 enamelin/amelogenin. We provide a phenomenological model to explain this effect that assumes only isolated enamelin proteins can act as sites of enhanced nucleation, while enamelin oligomers cannot. Even when interaction is random, the model reproduces the observed behavior, suggesting a simple means to tightly control the timing and extent of nucleation and phase transformation by amelogenin and enamelin.

20.
Environ Sci Technol ; 52(3): 1624-1632, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29271640

RESUMO

Layered double hydroxides (LDHs) are anion exchangers with a strong potential to scavenge anionic contaminants in aquatic environments. Here, the uptake of selenite (SeO32-) by Ca-Al LDHs was investigated as a function of Se concentration. Thermodynamic modeling of batch sorption isotherms shows that the formation of SeO32--intercalated AFm (hydrated calcium aluminate monosubstituent) phase, AFm-SeO3, is the dominant mechanism controlling the retention of Se at medium loadings. AFm-Cl2 shows much stronger affinity and larger distribution ratio (Rd ∼ 17800 L kg-1) toward SeO32- than AFm-SO4 (Rd ∼ 705 L kg-1). At stoichiometric SeO32- loading for anion exchange, the newly formed AFm-SeO3 phase results in two basal spacing, i.e., 9.93 ± 0.06 Å and ∼11.03 ± 0.03 Å. Extended X-ray absorption fine structure (EXAFS) spectra indicate that the intercalated SeO32- forms inner-sphere complexes with the Ca-Al-O layers. In situ X-ray diffraction (XRD) shows that basal spacing of Ca-Al LDHs have a remarkable linear relationship with the size of hydrated intercalated anions (i.e., Cl-, SO42-, MoO42-, and SeO32-). Contrary to AFm-SeO3 with inner-sphere SeO32- complexes in the interlayer, the phase with hydrogen-bonded inner-sphere complexed SeO32- is kinetically favored but thermodynamically unstable. This work offers new insights about the determination of intercalated anion coordination geometries via XRD analyses.


Assuntos
Hidróxidos , Ácido Selenioso , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...