Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 7(4): e0017122, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35727021

RESUMO

Personal care and hygiene regimens may substantially alter the composition of the skin microbiota through direct and indirect mechanisms. An understanding of the timescales of commensal skin microbiota reestablishment following perturbation is required to inform consumer safety risk assessment, and support product development. In the current investigation, the microbiota of the volar and dorsal forearm of 10 volunteers was sampled immediately before and after wiping with 70% ethanol and at up to 24 h afterwards. Quantitative PCR and amplicon sequencing were used to measure microbial load and composition, and concentrations of the antimicrobial peptide psoriasin were measured using an enzyme-linked immunosorbent assay (ELISA). Ethanol wiping significantly reduced the total bacterial abundance at 2 h post-wipe. Recovery was observed after 6 h for total bacterial populations and for Staphylococcus epidermidis depending on the site tested. Microbiome diversity recovered by 6 h after wiping. Psoriasin concentrations were highly variable between volunteers, ranging from 42 to 1,569 ng/mL, and dorsal concentrations were significantly higher than volar concentrations (P < 0.05). For most of the volunteers, the application of ethanol decreased psoriasin concentrations, particularly for the dorsal samples, but the overall effect was not significant. This work extends observations of skin microbiome stability and demonstrates resilience in a key antimicrobial peptide. IMPORTANCE An understanding of the timescales of commensal skin microbiota reestablishment following perturbation is required to inform consumer safety risk assessment and support product development. Following ethanol exposure, total bacterial populations and microbiome diversity recovered after 6 h. For most of the volunteers, the application of ethanol decreased psoriasin concentrations, but the overall effect was not significant. This work extends observations of skin microbiome stability and demonstrates resilience in a key antimicrobial peptide.


Assuntos
Etanol , Microbiota , Bactérias/genética , Carga Bacteriana , Etanol/farmacologia , Humanos , Proteína A7 Ligante de Cálcio S100 , Pele/microbiologia
2.
Clin Microbiol Rev ; 32(4)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31366612

RESUMO

Microbiomes associated with human skin and the oral cavity are uniquely exposed to personal care regimes. Changes in the composition and activities of the microbial communities in these environments can be utilized to promote consumer health benefits, for example, by reducing the numbers, composition, or activities of microbes implicated in conditions such as acne, axillary odor, dandruff, and oral diseases. It is, however, important to ensure that innovative approaches for microbiome manipulation do not unsafely disrupt the microbiome or compromise health, and where major changes in the composition or activities of the microbiome may occur, these require evaluation to ensure that critical biological functions are unaffected. This article is based on a 2-day workshop held at SEAC Unilever, Sharnbrook, United Kingdom, involving 31 specialists in microbial risk assessment, skin and oral microbiome research, microbial ecology, bioinformatics, mathematical modeling, and immunology. The first day focused on understanding the potential implications of skin and oral microbiome perturbation, while approaches to characterize those perturbations were discussed during the second day. This article discusses the factors that the panel recommends be considered for personal care products that target the microbiomes of the skin and the oral cavity.


Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos/normas , Microbiota/fisiologia , Boca/microbiologia , Pele/microbiologia , Educação , Humanos
3.
Food Sci Nutr ; 4(3): 479-89, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27247777

RESUMO

Quality assessment of finfish fillets during storage is important to be able to predict the shelf life of the fresh product during distribution. Microbial, chemical (pH, TMA, and TVB-N), and sensory (Quality index assessment QIA, Torry scheme) changes in vacuum-packaged blue-spotted emperor (Lethrinus sp), saddletail (Lutjanus malabaricus), crimson snapper (Lutjanus erythropterus), barramundi (Lates calcarifer), and Atlantic salmon (Salmo salar) fillets stored at 4°C were evaluated for 5 days. Microbiological study included evaluation of TVC (total viable counts), total psychrotrophic organisms, and H2S-producing bacteria. Numbers increased during storage time and reached an average of 8.5, 8.5, and 9.2 log10 cfu/g, respectively, for the five different fish species. These levels were above accepted microbiological limits for fish fillets. Although the sensory analyses showed a decrease in quality, none of the finfish fillets were considered unacceptable at the end of the storage trial. Chemically, there was a slight pH increase, but trimethylamine (TMA) levels remained low. However, total volatile basic nitrogen (TVB-N) levels increased over time, reaching levels above 35 mg/100 g for blue spotted emperor, saddletail snapper, and crimson snapper by the end of the storage period. Results show that the deterioration of finfish fillet quality is a complex event of biochemical, sensory, and microbial factors, and multiple analyses may be required to define acceptability.

4.
Food Microbiol ; 57: 144-50, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27052713

RESUMO

Predictive models offer efficient means to manage the quality and safety of highly perishable seafood. Salmon is an increasingly popular seafood, and relies on well managed domestic and international supply chains to minimize growth of spoilage and pathogenic bacteria. While the literature describes predictive models for smoked and modified atmosphere packaged salmon, there are no reported models for spoilage bacteria and Listeria monocytogenes on head-on and gutted (HOG) aerobically-stored Atlantic salmon. Predictive models were developed for microbial and sensorial degradation of HOG Atlantic salmon stored at 0-15 °C until the end of shelf-life. Total Viable Count (TVC) and Pseudomonas spp. had similar growth rates at 0, 5 and 10 °C, but TVC rate was higher at 15 °C. L. monocytogenes growth rate at 0 °C was 0.004 log10 cfu/h, and showed a log-linear increase (R(2) = 0.99) to 0.079 log10 cfu/h at 15 °C. Sensory Quality Index (QI) scores were 2.4, 4.5, and 7.2 times greater at 5, 10 and 15 °C, respectively, compared to 0 °C. QI and TVC rates had a relatively strong relationship at 5 (R(2) = 0.87), 10 (R(2) = 0.80) and 15 °C (R(2) = 0.78), compared to 0 °C (R(2) = 0.50). These models are potential tools to manage the safety and quality of HOG Atlantic salmon in supply chains.


Assuntos
Bactérias/crescimento & desenvolvimento , Salmo salar/microbiologia , Alimentos Marinhos/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Temperatura Baixa , Feminino , Contaminação de Alimentos/análise , Armazenamento de Alimentos , Humanos , Masculino , Modelos Biológicos , Alimentos Marinhos/microbiologia , Paladar
5.
J Food Prot ; 76(7): 1168-78, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23834791

RESUMO

Vibrio parahaemolyticus can accumulate and grow in oysters stored without refrigeration, representing a potential food safety risk. High temperatures during oyster storage can lead to an increase in total viable bacteria counts, decreasing product shelf life. Therefore, a predictive tool that allows the estimation of both V. parahaemolyticus populations and total viable bacteria counts in parallel is needed. A stochastic model was developed to quantitatively assess the populations of V. parahaemolyticus and total viable bacteria in Pacific oysters for six different supply chain scenarios. The stochastic model encompassed operations from oyster farms through consumers and was built using risk analysis software. Probabilistic distributions and predictions for the percentage of Pacific oysters containing V. parahaemolyticus and high levels of viable bacteria at the point of consumption were generated for each simulated scenario. This tool can provide valuable information about V. parahaemolyticus exposure and potential control measures and can help oyster companies and regulatory agencies evaluate the impact of product quality and safety during cold chain management. If coupled with suitable monitoring systems, such models could enable preemptive action to be taken to counteract unfavorable supply chain conditions.


Assuntos
Crassostrea/microbiologia , Contaminação de Alimentos/análise , Viabilidade Microbiana , Frutos do Mar/microbiologia , Vibrio parahaemolyticus/crescimento & desenvolvimento , Animais , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Inocuidade dos Alimentos , Humanos , Valor Preditivo dos Testes , Processos Estocásticos
6.
Appl Environ Microbiol ; 77(24): 8687-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22003032

RESUMO

Vibrio parahaemolyticus is an indigenous bacterium of marine environments. It accumulates in oysters and may reach levels that cause human illness when postharvest temperatures are not properly controlled and oysters are consumed raw or undercooked. Predictive models were produced by injecting Pacific oysters (Crassostrea gigas) with a cocktail of V. parahaemolyticus strains, measuring viability rates at storage temperatures from 3.6 to 30.4°C, and fitting the data to a model to obtain parameter estimates. The models were evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) containing natural populations of V. parahaemolyticus. V. parahaemolyticus viability was measured by direct plating samples on thiosulfate-citrate-bile salts-sucrose (TCBS) agar for injected oysters and by most probable number (MPN)-PCR for oysters containing natural populations. In parallel, total viable bacterial counts (TVC) were measured by direct plating on marine agar. Growth/inactivation rates for V. parahaemolyticus were -0.006, -0.004, -0.005, -0.003, 0.030, 0.075, 0.095, and 0.282 log10 CFU/h at 3.6, 6.2, 9.6, 12.6, 18.4, 20.0, 25.7, and 30.4°C, respectively. The growth rates for TVC were 0.015, 0.023, 0.016, 0.048, 0.055, 0.071, 0.133, and 0.135 log10 CFU/h at 3.6, 6.2, 9.3, 14.9, 18.4, 20.0, 25.7, and 30.4°C, respectively. Square root and Arrhenius-type secondary models were generated for V. parahaemolyticus growth and inactivation kinetic data, respectively. A square root model was produced for TVC growth. Evaluation studies showed that predictive growth for V. parahaemolyticus and TVC were "fail safe." The models can assist oyster companies and regulators in implementing management strategies to minimize V. parahaemolyticus risk and enhancing product quality in supply chains.


Assuntos
Armazenamento de Alimentos , Viabilidade Microbiana/efeitos da radiação , Ostreidae/microbiologia , Vibrio parahaemolyticus/efeitos da radiação , Animais , Contagem de Colônia Microbiana , Meios de Cultura/química , Modelos Estatísticos , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...