Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(5): 2645-2652, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38709872

RESUMO

In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Microeletrodos , Neuropeptídeo Y , Platina , Neuropeptídeo Y/análise , Técnicas Biossensoriais/métodos , Platina/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação
2.
Electrochim Acta ; 4882024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38654828

RESUMO

Electrochemical impedance spectroscopy (EIS) is a powerful technique for studying the interaction at electrode/solution interfaces. The adoption of EIS for obtaining analytical signals in biosensors based on aptamers is gaining popularity because of its advantageous characteristics for molecular recognition. Neuropeptide Y (NPY), the most abundant neuropeptide in the body, plays a crucial role with its stress-relieving properties. Quantitative measurement of NPY is imperative for understanding its role in these and other biological processes. Although aptamer-modified electrodes for NPY detection using EIS present a promising alternative, the correlation between the data obtained and the adsorption process on the electrodes is not fully understood. Various studies utilize the change in charge transfer resistance when employing an active redox label. In contrast, label-free measurement relies on changes in capacitance. To address these challenges, we focused on the interaction between aptamer-modified planar electrodes and their target, NPY. We proposed utilizing -ω*Zimag as the analytical signal, which facilitated the analysis of the adsorption process using an analogous Langmuir isotherm equation. This approach differs from implantable microelectrodes, which adhere to the Freundlich adsorption isotherm. Notably, our method obviates the need for a redox label and enables the detection of NPY at concentrations as low as 20 pg/mL. This methodology demonstrated exceptional selectivity, exhibiting a signal difference of over 20-to-1 against potential interfering molecules.

3.
Neuropeptides ; 104: 102413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335798

RESUMO

The measurement of neuropeptides using small electrodes for high spatial resolution would provide us with localized information on the release of neuromolecules. The release of Neuropeptide Y (NPY) is related to different neurological diseases such as stress, obesity, and PTSD, among others. In this conference paper, we electrodeposited polypyrrole on carbon fiber microelectrodes in the presence of NPY to develop a molecularly imprinted polypyrrole sensitive to NPY. Optimization of the electrodeposition process resulted in the full coverage of the polymer with nucleation sites on the carbon fiber ridges, achieving completion by the seventh cycle. Electrodeposition was performed for five cycles, and using cyclic voltammetry (CV), we studied the change in the oxidation current peak for polypyrrole due to the presence of NPY. We also observed a change in capacitance due to the presence of NPY, which was studied by electrochemical impedance spectroscopy (EIS). A linear correlation was found between the oxidation peak and the concentration of NPY between 50 ng/mL and 1000 ng/mL. In addition, a linear correlation was also found between microelectrode capacitance and the concentration of NPY between 50 ng/mL and 1000 ng/mL at 100 kHz.


Assuntos
Neuropeptídeo Y , Polímeros , Fibra de Carbono , Microeletrodos , Neuropeptídeo Y/análise , Polímeros/química , Pirróis
4.
Antibiotics (Basel) ; 11(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35203761

RESUMO

Due to the rapid mutation of pathogenic microorganisms, drug-resistant superbugs have evolved. Antimicrobial-resistant germs may share their resistance genes with other germs, making them untreatable. The search for more combative antibiotic compounds has led researchers to explore metal-based strategies centered on perturbing the bioavailability of essential metals in microbes and examining the therapeutic potential of metal complexes. Given the limited knowledge on the application of titanium(IV), in this work, eight Ti(IV) complexes and some of their corresponding ligands were screened by the Community for Open Antimicrobial Drug Discovery for antimicrobial activity. The compounds were selected for evaluation because of their low cytotoxic/antiproliferative behavior against a human non-cancer cell line. At pH 7.4, these compounds vary in terms of their solution stability and ligand exchange lability; therefore, an assessment of their solution behavior provides some insight regarding the importance of the identity of the metal compound to the antimicrobial therapeutic potential. Only one compound, Ti(deferasirox)2, exhibited promising inhibitory activity against the Gram-positive bacteria methicillin-resistant Staphylococcus aureus and minimal toxicity against human cells. The ability of this compound to undergo transmetalation with labile Fe(III) sources and, as a consequence, inhibit Fe bioavailability and ribonucleotide reductase is evaluated as a possible mechanism for its antibiotic effect.

5.
Inorganics (Basel) ; 8(2)2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34046448

RESUMO

Over time platinum-based anticancer drugs have dominated the market, but their side effects significantly impact the quality of life of patients. Alternative treatments are being developed all over the world. The titanocene and auranofin families of compounds, discovered through an empirical search for other metal-based therapeutics, hold tremendous promise to improve the outcomes of cancer treatment. Herein we present a historical perspective of these compounds and review current efforts focused on the evolution of their ligands to improve their physiological solution stability, cancer selectivity, and antiproliferative performance, guided by a clear understanding of the coordination chemistry and aqueous speciation of the metal ions, of the cytotoxic mechanism of action of the compounds, and the external factors that limit their therapeutic potential. Newer members of these families of compounds and their combination in novel bimetallic complexes are the result of years of scientific research. We believe that this review can have a positive impact in the development and understanding of the metal-based drugs of gold, titanium, and beyond.

6.
J Chem Educ ; 97(7): 1970-1975, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36819740

RESUMO

Coordination chemistry is a major component of the undergraduate inorganic chemistry curriculum and yet the presentation of the material can be cumbersome due to the limitations of the course typically being taught in one semester. Also, because of the large scope of this branch of chemistry encompassing all of the elements, the course design has not been standardized. These factors result in some important coordination chemistry themes being given insufficient development. Herein we propose a novel activity to formally introduce metal complex aqueous speciation in a holistic active-learning manner that includes a lecture component and hands-on experience. This topic has real world relevance and contextualizes many important coordination concepts. It would extend student comprehension about the intricate factors that affect metal complexation in an aqueous solution environment by focusing on the influence of pH. The activity explores the pH dependent speciation of the well-characterized interaction between Fe(III) and 2,3-dihydroxynapthalene-6-sulfonate and reveals the colorful changes in species throughout the pH range of 0 to 13. Students learn how to generate speciation plots and to understand the ultraviolet-visible (UV-Vis) electronic absorption spectroscopy of transition metal compounds to be able to analyze the source of color that they observe. Assessment of the activity was conducted with 24 students who completed a Likert scale survey and responded to open-ended questions. The activity was then applied in actual course settings in which student comprehension was quantitatively evaluated. The activity can be easily adapted to students of different stages of academic development from elementary to college students.

7.
J Inorg Biochem ; 186: 176-186, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29957454

RESUMO

A water-soluble octanuclear cluster, [Fe8], was studied with regard to its properties as a potential contrast enhancing agent in magnetic resonance imaging (MRI) in magnetic fields of 1.3, 7.2 and 11.9 T and was shown to have transverse relaxivities r2 = 4.01, 10.09 and 15.83 mM s-1, respectively. A related hydrophobic [Fe8] cluster conjugated with 5 kDa hyaluronic acid (HA) was characterized by 57Fe-Mössbauer and MALDI-TOF mass spectroscopy, and was evaluated in aqueous solutions in vitro with regard to its contrast enhancing properties [r2 = 3.65 mM s-1 (1.3 T), 26.20 mM s-1 (7.2 T) and 52.18 mM s-1 (11.9 T)], its in vitro cellular cytotoxicity towards A-549 cells and COS-7 cells and its in vivo enhancement of T2-weighted images (4.7 T) of a human breast cancer xenografted on a nude mouse. The physiologically compatible [Fe8]-HA conjugate was i.v. injected to the tumor-bearing mouse, resulting in observable, heterogeneous signal change within the tumor, evident 15 min after injection and persisting for approximately 30 min. Both molecular [Fe8] and its HA-conjugate show a strong magnetic field dependence on r2, rendering them promising platforms for the further development of T2 MRI contrast agents in high and ultrahigh magnetic fields.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Ferro , Imageamento por Ressonância Magnética , Compostos Organometálicos , Células A549 , Animais , Neoplasias da Mama/metabolismo , Células COS , Chlorocebus aethiops , Meios de Contraste/síntese química , Meios de Contraste/química , Meios de Contraste/farmacologia , Feminino , Xenoenxertos , Humanos , Ferro/química , Ferro/farmacologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-33912613

RESUMO

A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...