Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Brain Stimul ; 17(3): 636-647, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734066

RESUMO

BACKGROUND: Transcranial ultrasound stimulation (TUS) is a non-invasive brain stimulation technique; when skull aberrations are compensated for, this technique allows, with millimetric accuracy, circumvention of the invasive surgical procedure associated with deep brain stimulation (DBS) and the limited spatial specificity of transcranial magnetic stimulation. OBJECTIVE: /hypothesis: We hypothesize that MR-guided low-power TUS can induce a sustained decrease of tremor power in patients suffering from medically refractive essential tremor. METHODS: The dominant hand only was targeted, and two anatomical sites were sonicated in this exploratory study: the ventral intermediate nucleus of the thalamus (VIM) and the dentato-rubro-thalamic tract (DRT). Patients (N = 9) were equipped with MR-compatible accelerometers attached to their hands to monitor their tremor in real-time during TUS. RESULTS: VIM neurostimulations followed by a low-duty cycle (5 %) DRT stimulation induced a substantial decrease in the tremor power in four patients, with a minimum of 89.9 % reduction when compared with the baseline power a few minutes after the DRT stimulation. The only patient stimulated in the VIM only and with a low duty cycle (5 %) also experienced a sustained reduction of the tremor (up to 93.4 %). Four patients (N = 4) did not respond. The temperature at target was 37.2 ± 1.4 °C compared to 36.8 ± 1.4 °C for a 3 cm away control point. CONCLUSIONS: MR-guided low power TUS can induce a substantial and sustained decrease of tremor power. Follow-up studies need to be conducted to reproduce the effect and better to understand the variability of the response amongst patients. MR thermometry during neurostimulations showed no significant thermal rise, supporting a mechanical effect.

2.
Nat Commun ; 15(1): 2586, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531880

RESUMO

Exogenous attention, the process that makes external salient stimuli pop-out of a visual scene, is essential for survival. How attention-capturing events modulate human brain processing remains unclear. Here we show how the psychological construct of exogenous attention gradually emerges over large-scale gradients in the human cortex, by analyzing activity from 1,403 intracortical contacts implanted in 28 individuals, while they performed an exogenous attention task. The timing, location and task-relevance of attentional events defined a spatiotemporal gradient of three neural clusters, which mapped onto cortical gradients and presented a hierarchy of timescales. Visual attributes modulated neural activity at one end of the gradient, while at the other end it reflected the upcoming response timing, with attentional effects occurring at the intersection of visual and response signals. These findings challenge multi-step models of attention, and suggest that frontoparietal networks, which process sequential stimuli as separate events sharing the same location, drive exogenous attention phenomena such as inhibition of return.


Assuntos
Atenção , Visão Ocular , Humanos , Atenção/fisiologia , Encéfalo , Mapeamento Encefálico , Estimulação Luminosa , Percepção Visual/fisiologia
3.
Commun Biol ; 6(1): 730, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454150

RESUMO

How do attention and consciousness interact in the human brain? Rival theories of consciousness disagree on the role of fronto-parietal attentional networks in conscious perception. We recorded neural activity from 727 intracerebral contacts in 13 epileptic patients, while they detected near-threshold targets preceded by attentional cues. Clustering revealed three neural patterns: first, attention-enhanced conscious report accompanied sustained right-hemisphere fronto-temporal activity in networks connected by the superior longitudinal fasciculus (SLF) II-III, and late accumulation of activity (>300 ms post-target) in bilateral dorso-prefrontal and right-hemisphere orbitofrontal cortex (SLF I-III). Second, attentional reorienting affected conscious report through early, sustained activity in a right-hemisphere network (SLF III). Third, conscious report accompanied left-hemisphere dorsolateral-prefrontal activity. Task modeling with recurrent neural networks revealed multiple clusters matching the identified brain clusters, elucidating the causal relationship between clusters in conscious perception of near-threshold targets. Thus, distinct, hemisphere-asymmetric fronto-parietal networks support attentional gain and reorienting in shaping human conscious experience.


Assuntos
Mapeamento Encefálico , Estado de Consciência , Humanos , Atenção , Encéfalo , Lobo Frontal
4.
Parkinsonism Relat Disord ; 104: 49-57, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36242900

RESUMO

INTRODUCTION: Subthalamic deep-brain-stimulation (STN-DBS) is an effective means to treat Parkinson's disease (PD) symptoms. Its benefit on gait disorders is variable, with freezing of gait (FOG) worsening in about 30% of cases. Here, we investigate the clinical and anatomical features that could explain post-operative FOG. METHODS: Gait and balance disorders were assessed in 19 patients, before and after STN-DBS using clinical scales and gait recordings. The location of active stimulation contacts were evaluated individually and the volumes of activated tissue (VAT) modelled for each hemisphere. We used a whole brain tractography template constructed from another PD cohort to assess the connectivity of each VAT within the 39 Brodmann cortical areas (BA) to search for correlations between postoperative PD disability and cortico-subthalamic connectivity. RESULTS: STN-DBS induced a 100% improvement to a 166% worsening in gait disorders, with a mean FOG decrease of 36%. We found two large cortical clusters for VAT connectivity: one "prefrontal", mainly connected with BA 8,9,10,11 and 32, and one "sensorimotor", mainly connected with BA 1-2-3,4 and 6. After surgery, FOG severity positively correlated with the right prefrontal VAT connectivity, and negatively with the right sensorimotor VAT connectivity. The right prefrontal VAT connectivity also tended to be positively correlated with the UPDRS-III score, and negatively with step length. The MDRS score positively correlated with the right sensorimotor VAT connectivity. CONCLUSION: Recruiting right sensorimotor and avoiding right prefrontal cortico-subthalamic fibres with STN-DBS could explain reduced post-operative FOG, since gait is a complex locomotor program that necessitates accurate cognitive control.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Marcha/fisiologia
5.
Front Neurol ; 13: 791092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547388

RESUMO

Background: The subthalamic nucleus (STN) is an effective neurosurgical target to improve motor symptoms in Parkinson's Disease (PD) patients. MR-guided Focused Ultrasound (MRgFUS) subthalamotomy is being explored as a therapeutic alternative to Deep Brain Stimulation (DBS) of the STN. The hyperdirect pathway provides a direct connection between the cortex and the STN and is likely to play a key role in the therapeutic effects of MRgFUS intervention in PD patients. Objective: This study aims to investigate the topography and somatotopy of hyperdirect pathway projections from the primary motor cortex (M1). Methods: We used advanced multi-fiber tractography and high-resolution diffusion MRI data acquired on five subjects of the Human Connectome Project (HCP) to reconstruct hyperdirect pathway projections from M1. Two neuroanatomy experts reviewed the anatomical accuracy of the tracts. We extracted the fascicles arising from the trunk, arm, hand, face and tongue area from the reconstructed pathways. We assessed the variability among subjects based on the fractional anisotropy (FA) and mean diffusivity (MD) of the fibers. We evaluated the spatial arrangement of the different fascicles using the Dice Similarity Coefficient (DSC) of spatial overlap and the centroids of the bundles. Results: We successfully reconstructed hyperdirect pathway projections from M1 in all five subjects. The tracts were in agreement with the expected anatomy. We identified hyperdirect pathway fascicles projecting from the trunk, arm, hand, face and tongue area in all subjects. Tract-derived measurements showed low variability among subjects, and similar distributions of FA and MD values among the fascicles projecting from different M1 areas. We found an anterolateral somatotopic arrangement of the fascicles in the corona radiata, and an average overlap of 0.63 in the internal capsule and 0.65 in the zona incerta. Conclusion: Multi-fiber tractography combined with high-resolution diffusion MRI data enables the identification of the somatotopic organization of the hyperdirect pathway. Our preliminary results suggest that the subdivisions of the hyperdirect pathway projecting from the trunk, arm, hand, face, and tongue motor area are intermixed at the level of the zona incerta and posterior limb of the internal capsule, with a predominantly overlapping topographical organization in both regions. Subject-specific knowledge of the hyperdirect pathway somatotopy could help optimize target definition in MRgFUS intervention.

6.
Neuroimage ; 254: 119116, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318150

RESUMO

PURPOSE: Human neuronal activity, recorded in vivo from microelectrodes, may offer valuable insights into physiological mechanisms underlying human cognition and pathophysiological mechanisms of brain diseases, in particular epilepsy. Continuous and long-term recordings are necessary to monitor non predictable pathological and physiological activities like seizures or sleep. Because of their high impedance, microelectrodes are more sensitive to noise than macroelectrodes. Low noise levels are crucial to detect action potentials from background noise, and to further isolate single neuron activities. Therefore, long-term recordings of multi-unit activity remains a challenge. We shared here our experience with microelectrode recordings and our efforts to reduce noise levels in order to improve signal quality. We also provided detailed technical guidelines for the connection, recording, imaging and signal analysis of microelectrode recordings. RESULTS: During the last 10 years, we implanted 122 bundles of Behnke-Fried hybrid macro-microelectrodes, in 56 patients with pharmacoresistant focal epilepsy. Microbundles were implanted in the temporal lobe (74%), as well as frontal (15%), parietal (6%) and occipital (5%) lobes. Low noise levels depended on our technical setup. The noise reduction was mainly obtained after electrical insulation of the patient's recording room and the use of a reinforced microelectrode model, reaching median root mean square values of 5.8 µV. Seventy percent of the bundles could record multi-units activities (MUA), on around 3 out of 8 wires per bundle and for an average of 12 days. Seizures were recorded by microelectrodes in 91% of patients, when recorded continuously, and MUA were recorded during seizures for 75 % of the patients after the insulation of the room. Technical guidelines are proposed for (i) electrode tails manipulation and protection during surgical bandage and connection to both clinical and research amplifiers, (ii) electrical insulation of the patient's recording room and shielding, (iii) data acquisition and storage, and (iv) single-units activities analysis. CONCLUSIONS: We progressively improved our recording setup and are now able to record (i) microelectrode signals with low noise level up to 3 weeks duration, and (ii) MUA from an increased number of wires . We built a step by step procedure from electrode trajectory planning to recordings. All these delicate steps are essential for continuous long-term recording of units in order to advance in our understanding of both the pathophysiology of ictogenesis and the neuronal coding of cognitive and physiological functions.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Potenciais de Ação , Eletrodos Implantados , Humanos , Microeletrodos , Neurônios/fisiologia , Convulsões
7.
J Parkinsons Dis ; 12(2): 639-653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34744048

RESUMO

BACKGROUND: Dopa-resistant freezing of gait (FOG) and falls represent the dominant motor disabilities in advanced Parkinson's disease (PD). OBJECTIVE: We investigate the effects of deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR), comprised of the pedunculopontine (PPN) and cuneiform (CuN) nuclei, for treating gait and balance disorders, in a randomized double-blind cross-over trial. METHODS: Six PD patients with dopa-resistant FOG and/or falls were operated for MLR-DBS. Patients received three DBS conditions, PPN, CuN, or Sham, in a randomized order for 2-months each, followed by an open-label phase. The primary outcome was the change in anteroposterior anticipatory-postural-adjustments (APAs) during gait initiation on a force platformResults:The anteroposterior APAs were not significantly different between the DBS conditions (median displacement [1st-3rd quartile] of 3.07 [3.12-4.62] cm with sham-DBS, 1.95 [2.29-3.85] cm with PPN-DBS and 2.78 [1.66-4.04] cm with CuN-DBS; p = 0.25). Step length and velocity were significantly higher with CuN-DBS vs. both sham-DBS and PPN-DBS. Conversely, step length and velocity were lower with PPN-DBS vs. sham-DBS, with greater double stance and gait initiation durations. One year after surgery, step length was significantly lower with PPN-DBS vs. inclusion. We did not find any significant change in clinical scales between DBS conditions or one year after surgery. CONCLUSION: Two months of PPN-DBS or CuN-DBS does not effectively improve clinically dopa-resistant gait and balance disorders in PD patients.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Núcleo Tegmental Pedunculopontino , Estimulação Encefálica Profunda/métodos , Di-Hidroxifenilalanina , Marcha , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-33060034

RESUMO

BACKGROUND: Subthalamic nucleus (STN) deep brain stimulation alleviates obsessive-compulsive disorder (OCD) symptoms, suggesting that this basal ganglia structure may play a key role in integrating limbic and motor information. We explored the modulation of STN neural activity by visual emotional information under different motor demands. METHODS: We compared STN local field potentials acquired in 7 patients with OCD and 15 patients with Parkinson's disease off and on levodopa while patients categorized pictures as unpleasant, pleasant, or neutral and pressed a button for 1 of these 3 categories depending on the instruction. RESULTS: During image presentation, theta power increased for unpleasant compared with neutral images in both patients with OCD and patients with Parkinson's disease. Only in patients with OCD was theta power also increased in pleasant compared with neutral trials. During the button press in patients with OCD, no modification of STN activity was seen on average, but theta power increased when the image triggering the motor response was unpleasant. Conversely, in patients with Parkinson's disease, a beta decrease was observed during the button press unrelated to the valence of the stimulus. Finally, in patients with OCD, a significant positive relationship was observed between the amplitude of the emotionally related theta response and symptom severity (measured using the Yale-Brown Obsessive Compulsive Scale). CONCLUSIONS: We highlighted modulations of STN theta band activity related to emotions that were specific to OCD and correlated with OCD symptom severity. STN theta-induced activity might therefore underlie dysfunction of the limbic STN and its related network leading to OCD pathophysiology.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Doença de Parkinson , Núcleo Subtalâmico , Emoções , Humanos , Transtorno Obsessivo-Compulsivo/terapia , Doença de Parkinson/terapia
10.
Neurology ; 96(3): e460-e471, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33277419

RESUMO

OBJECTIVES: The classic Braak neuropathologic staging model in Parkinson disease (PD) suggests that brain lesions progress from the medulla oblongata to the cortex. An alternative model in which neurodegeneration first occurs in the cortex has also been proposed. These 2 models may correspond to different patient phenotypes. To test these 2 models and to investigate whether they were influenced by the presence of REM sleep behavior disorder (RBD), we used multimodal MRI and partial least squares path modeling (PLS-PM) assuming that patients with RBD followed distinct neurodegeneration pattern. METHODS: Fifty-four patients with PD (34 with RBD) and 25 healthy volunteers were scanned with T1-weighted, diffusion tensor, and neuromelanin-sensitive imaging. Volume, signal, and mean, axial, and radial diffusivities were calculated in brainstem, basal forebrain, and cortical regions. PLS-PM, estimating a network of causal relationships between blocks of variables, was used to build and test an analytical model based on Braak staging. The overall quality of the model was assessed with goodness of fit coefficient (Gof). RESULTS: PLS-PM was run on patients with PD with RBD and without RBD separately. In PD with RBD, a brainstem-to-cortex model had significant Gof (0.71, p = 0.01), whereas a cortex-to-brainstem model did not. In contrast, in patients with PD without RBD, the brainstem-to-cortex model was not significant (Gof = 0.64, p = 0.27), and the cortex-to-brainstem model was highly significant (Gof = 0.72, p = 0.008). CONCLUSIONS: With the PLS-PM imaging-based model, the neurodegeneration pattern of patients with PD with RBD was consistent with the Braak brainstem-to-cortex model, whereas that of patients without RBD followed the cortex-to-brainstem model.


Assuntos
Encéfalo/diagnóstico por imagem , Modelos Teóricos , Doença de Parkinson/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Biomarcadores , Imagem de Tensor de Difusão , Progressão da Doença , Feminino , Humanos , Análise dos Mínimos Quadrados , Imageamento por Ressonância Magnética , Masculino , Índice de Gravidade de Doença
11.
Front Psychiatry ; 11: 572059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281642

RESUMO

Obsessive-compulsive disorder (OCD) is a widespread chronic neuropsychiatric disorder characterized by recurrent intrusive thoughts, images, or urges (obsessions) that typically cause anxiety or distress. Even when optimal treatment is provided, 10% of patients remain severely affected chronically. In some countries, deep brain stimulation (DBS) is an approved and effective therapy for patients suffering from treatment-resistant OCD. Hereafter, we report the case of a middle-aged man with a long history of treatment-resistant OCD spanning nearly a decade with Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores oscillating between 21 and 28. The patient underwent bilateral implantation of ventral striatum/ventral capsule DBS leads attached to a battery-operated implanted pulse generator. After a 3-month postimplantation period, the DBS protocol started. Three months after the onset of DBS treatment, the patient's Y-BOCS score had dropped to 3, and he became steadily asymptomatic. However, inadvertently, at this time, it was found out that the implanted pulse generator battery had discharged completely, interrupting brain stimulation. The medical team carried on with the original therapeutic and evaluation plan in the absence of active DBS current. After 12 additional months under off-DBS, the patient remained at a Y-BOCS score of 7 and asymptomatic. To our knowledge, this is the first report that provides an opportunity to discuss four different hypotheses of long-term recovery induced by DBS in a treatment-refractory OCD patient, notably: (1) A placebo effect; (2) Paradoxical improvements induced by micro-lesions generated by DBS probe implantation procedures; (3) Unexpected late spontaneous improvements; (4) Recovery driven by a combination of active DBS-induction, the effects of medication, and DBS-placebo effects.

12.
J Neurol Neurosurg Psychiatry ; 91(12): 1349-1356, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33033168

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) is a major cause of disability in western country and responsible for severe impairment of quality of life. About 10% of patients present with severe OCD symptoms and require innovative treatment such as deep brain stimulation (DBS). Among possible targets, the non-motor subthalamic nucleus (STN) is a key node of the basal ganglia circuitry, strongly connected to limbic cortical areas known to be involved in OCD. METHOD: We analysed, in a prospective, observational, monocentric, open label cohort, the effect of chronic non-motor STN-DBS in 19 patients with treatment-resistant OCD consecutively operated in a single centre. Severity of OCD was evaluated using the Yale and Brown Obsessive-Compulsive Scale (YBOCS). YBOCS scores at 6, 12 and 24 months postoperatively were compared with baseline. Responders were defined by >35% improvement of YBOCS scores. Global Assessment Functioning (GAF) scale was used to evaluate the impact of improvement. RESULTS: At a 24-month follow-up, the mean YBOCS score improved by 53.4% from 33.3±3.5 to 15.8±9.1 (95% CI 11.2-20.4; p<0.0001). Fourteen out of 19 patients were considered as responders, 5 out of 19 being improved over 75% and 10 out of 19 over 50%. GAF scale improved by 92% from 34.1±3.9 to 66.4±18.8 (95% CI 56.7-76.1; p=0.0003). The most frequent adverse events consisted of transient DBS-induced hypomania and anxiety. CONCLUSION: Chronic DBS of the non-motor STN is an effective and relatively safe procedure to treat severe OCD resistant to conventional management.


Assuntos
Estimulação Encefálica Profunda/métodos , Transtorno Obsessivo-Compulsivo/terapia , Núcleo Subtalâmico , Adulto , Ansiedade/etiologia , Estudos de Coortes , Estimulação Encefálica Profunda/efeitos adversos , Feminino , Seguimentos , Humanos , Masculino , Mania/etiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Resultado do Tratamento
13.
Parkinsonism Relat Disord ; 62: 91-97, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30704853

RESUMO

INTRODUCTION: Freezing of gait (FOG) and falls are the most disabling motor symptoms in Parkinson's disease (PD) patients. The effects of subthalamic deep-brain-stimulation (STN-DBS) on FOG and falls are still a matter of controversy, and factors contributing to their outcome have yet to be defined. METHODS: We examined the relationship between FOG and falls after STN-DBS and preoperative clinical features, MRI voxel-based-morphometry (VBM) analysis and statistical mapping of electrode locations. RESULTS: 331 patients (age at surgery = 57.7 ±â€¯8.4 years; disease duration = 12.5 ±â€¯5 years) were included in the final analysis, with VBM analysis in 151 patients. After surgery, FOG was aggravated in 93 patients and falls in 75 patients. After surgery, FOG severity was related to its level before surgery without dopaminergic treatment, the dopaminergic treatment dosage and severity of motor fluctuations after surgery; and falls severity to lower postoperative cognitive performance. VBM analyses revealed that, relative to other patient groups, patients with FOG worsening had putamen grey matter density decrease, and fallers patients a left postcentral gyrus atrophy. The best effects of STN-DBS on FOG and falls were associated with the location of contacts within the STN, but no specific location related to aggravation. CONCLUSIONS: FOG and falls are reduced after STN-DBS in about 1/3 of patients, with the best effects obtained for electrodes located within the STN. Clinicians should be aware that, after STN-DBS, FOG severity is related to preoperative FOG severity whatever its dopa-sensitivity; and falls to lower postoperative cognitive performance; and atrophy of cortico-subcortical brain areas.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha/terapia , Marcha/fisiologia , Doença de Parkinson/terapia , Acidentes por Quedas , Adulto , Idoso , Estimulação Encefálica Profunda/efeitos adversos , Dopamina/metabolismo , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia
14.
Int J Comput Assist Radiol Surg ; 13(7): 1129-1139, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29619611

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) is an increasingly common treatment for neurodegenerative diseases. Neurosurgeons must have thorough procedural, anatomical, and functional knowledge to plan electrode trajectories and thus ensure treatment efficacy and patient safety. Developing this knowledge requires extensive training. We propose a training approach with objective assessment of neurosurgeon proficiency in DBS planning. METHODS: To assess proficiency, we propose analyzing both the viability of the planned trajectory and the manner in which the operator arrived at the trajectory. To improve understanding, we suggest a self-guided training course for DBS planning using real-time feedback. To validate the proposed measures of proficiency and training course, two experts and six novices followed the training course, and we monitored their proficiency measures throughout. RESULTS: At baseline, experts planned higher quality trajectories and did so more efficiently. As novices progressed through the training course, their proficiency measures increased significantly, trending toward expert measures. CONCLUSION: We developed and validated measures which reliably discriminate proficiency levels. These measures are integrated into a training course, which quantitatively improves trainee performance. The proposed training course can be used to improve trainees' proficiency, and the quantitative measures allow trainees' progress to be monitored.


Assuntos
Encéfalo/cirurgia , Competência Clínica , Estimulação Encefálica Profunda/métodos , Procedimentos Neurocirúrgicos/educação , Retroalimentação , Humanos
15.
Eur Psychiatry ; 51: 1-8, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514116

RESUMO

BACKGROUND: Current neurocognitive models suppose dysfunctions of associative and limbic cortico-basal ganglia circuits to be at the core of obsessive-compulsive disorder (OCD). As little is known about the state of underlying anatomical connections, we investigated whether these connections were reduced and/or not properly organised in OCD patients compared to control. METHODS: Diffusion magnetic resonance images were obtained in 37 OCD patients with predominant checking symptoms and 37 matched healthy controls. We developed indices to characterise the quantity (spatial extent and density) and the organisation (topography and segregation) of 24 anatomical connections between associative and limbic cortical (anterior cingulate, dorsolateral prefrontal, orbitofrontal cortices and the frontal pole), and subcortical (caudate nucleus, putamen and thalamus) areas in each hemisphere. RESULTS: Associative and limbic cortico-basal-ganglia connections were reduced in OCD patients compared to controls: 19/24 connections had a reduced subcortical spatial extent, 9/24 had a reduced density. Moreover, while the general topography was conserved, the different cortical projection fields in the striatum and thalamus were hyper-segregated in OCD patients compared to controls. CONCLUSION: These quantitative and qualitative differences of anatomical connections go beyond the current model of a reduced cortical control of automatic behaviour stored in the basal ganglia. The hyper-segregation in OCD could also impair the integration of cortical information in the thalamus and striatum and distort the subsequent behavioural selection process. This provides new working hypotheses for functional and behavioural studies on OCD.


Assuntos
Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Sistema Límbico/fisiologia , Imageamento por Ressonância Magnética/métodos , Comportamento Obsessivo/fisiopatologia , Transtorno Obsessivo-Compulsivo , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/psicologia
16.
Mov Disord ; 32(5): 693-704, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28164375

RESUMO

BACKGROUND: The objective of this study was to investigate pedunculopontine nucleus network dysfunctions that mediate impaired postural control and sleep disorder in Parkinson's disease. METHODS: We examined (1) Parkinson's disease patients with impaired postural control and rapid eye movement sleep behavior disorder (further abbreviated as sleep disorder), (2) Parkinson's disease patients with sleep disorder only, (3) Parkinson's disease patients with neither impaired postural control nor sleep disorder, and (4) healthy volunteers. We assessed postural control with clinical scores and biomechanical recordings during gait initiation. Participants had video polysomnography, daytime sleepiness self-evaluation, and resting-state functional MRIs. RESULTS: Patients with impaired postural control and sleep disorder had longer duration of anticipatory postural adjustments during gait initiation and decreased functional connectivity between the pedunculopontine nucleus and the supplementary motor area in the locomotor network that correlated negatively with the duration of anticipatory postural adjustments. Both groups of patients with sleep disorder had decreased functional connectivity between the pedunculopontine nucleus and the anterior cingulate cortex in the arousal network that correlated with daytime sleepiness. The degree of dysfunction in the arousal network was related to the degree of connectivity in the locomotor network in all patients with sleep disorder, but not in patients without sleep disorder or healthy volunteers. CONCLUSIONS: These results shed light on the functional neuroanatomy of pedunculopontine nucleus networks supporting the clinical manifestation and the interdependence between sleep and postural control impairments in Parkinson's disease. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Giro do Cíngulo/diagnóstico por imagem , Córtex Motor/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Núcleo Tegmental Pedunculopontino/diagnóstico por imagem , Equilíbrio Postural , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Feminino , Neuroimagem Funcional , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Núcleo Tegmental Pedunculopontino/fisiopatologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Transtornos do Sono-Vigília/diagnóstico por imagem , Transtornos do Sono-Vigília/fisiopatologia
17.
Hum Brain Mapp ; 37(11): 4112-4128, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400836

RESUMO

Huntington's disease (HD) is a genetic neurological disorder resulting in cognitive and motor impairments. We evaluated the longitudinal changes of functional connectivity in sensorimotor, associative and limbic cortico-basal ganglia networks. We acquired structural MRI and resting-state fMRI in three visits one year apart, in 18 adult HD patients, 24 asymptomatic mutation carriers (preHD) and 18 gender- and age-matched healthy volunteers from the TRACK-HD study. We inferred topological changes in functional connectivity between 182 regions within cortico-basal ganglia networks using graph theory measures. We found significant differences for global graph theory measures in HD but not in preHD. The average shortest path length (L) decreased, which indicated a change toward the random network topology. HD patients also demonstrated increases in degree k, reduced betweeness centrality bc and reduced clustering C. Changes predominated in the sensorimotor network for bc and C and were observed in all circuits for k. Hubs were reduced in preHD and no longer detectable in HD in the sensorimotor and associative networks. Changes in graph theory metrics (L, k, C and bc) correlated with four clinical and cognitive measures (symbol digit modalities test, Stroop, Burden and UHDRS). There were no changes in graph theory metrics across sessions, which suggests that these measures are not reliable biomarkers of longitudinal changes in HD. preHD is characterized by progressive decreasing hub organization, and these changes aggravate in HD patients with changes in local metrics. HD is characterized by progressive changes in global network interconnectivity, whose network topology becomes more random over time. Hum Brain Mapp 37:4112-4128, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/fisiopatologia , Adulto , Mapeamento Encefálico , Progressão da Doença , Feminino , Seguimentos , Humanos , Doença de Huntington/genética , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Tamanho do Órgão , Sintomas Prodrômicos , Descanso , Índice de Gravidade de Doença
18.
Brain ; 139(Pt 8): 2182-97, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27329770

RESUMO

SEE MUTHURAMAN ET AL DOI101093/AWW164 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Primary orthostatic tremor is characterized by high frequency tremor affecting the legs and trunk during the standing position. Cerebellar defects were suggested in orthostatic tremor without direct evidence. We aimed to characterize the anatomo-functional defects of the cerebellar motor pathways in orthostatic tremor. We used multimodal neuroimaging to compare 17 patients with orthostatic tremor and 17 age- and gender-matched healthy volunteers. Nine of the patients with orthostatic tremor underwent repetitive transcranial stimulation applied over the cerebellum during five consecutive days. We quantified the duration of standing position and tremor severity through electromyographic recordings. Compared to healthy volunteers, grey matter volume in patients with orthostatic tremor was (i) increased in the cerebellar vermis and correlated positively with the duration of the standing position; and (ii) increased in the supplementary motor area and decreased in the lateral cerebellum, which both correlated with the disease duration. Functional connectivity between the lateral cerebellum and the supplementary motor area was abnormally increased in patients with orthostatic tremor, and correlated positively with tremor severity. After repetitive transcranial stimulation, tremor severity and functional connectivity between the lateral cerebellum and the supplementary motor area were reduced. We provide an explanation for orthostatic tremor pathophysiology, and demonstrate the functional relevance of cerebello-thalamo-cortical connections in tremor related to cerebellar defects.


Assuntos
Doenças Cerebelares , Tontura , Neuroimagem Funcional/métodos , Córtex Motor/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Tremor , Adulto , Idoso , Doenças Cerebelares/diagnóstico por imagem , Doenças Cerebelares/fisiopatologia , Doenças Cerebelares/terapia , Tontura/diagnóstico por imagem , Tontura/fisiopatologia , Tontura/terapia , Vias Eferentes , Eletromiografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Resultado do Tratamento , Tremor/diagnóstico por imagem , Tremor/fisiopatologia , Tremor/terapia
19.
Front Neuroanat ; 10: 119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28154527

RESUMO

The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson's disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson's disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the potential to help identify white matter tracts connecting DBS targets in functional neurosurgery intervention.

20.
Int J Comput Assist Radiol Surg ; 10(12): 1973-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26210941

RESUMO

PURPOSE: Automatic methods for preoperative trajectory planning of electrodes in deep brain stimulation are usually based on the search for a path that resolves a set of surgical constraints to propose an optimal trajectory. The relative importance of each surgical constraint is usually defined as weighting parameters that are empirically set beforehand. The objective of this paper is to analyze the use of these parameters thanks to a retrospective study of trajectories manually planned by neurosurgeons. For that purpose, we firstly retrieved weighting factors allowing to match neurosurgeons manually planned choice of trajectory on each retrospective case; secondly, we compared the results from two different hospitals to evaluate their similarity; and thirdly, we compared the trends to the weighting factors empirically set in most current approaches. METHODS: To retrieve the weighting factors best matching the neurosurgeons manual plannings, we proposed two approaches: one based on a stochastic sampling of the parameters and the other on an exhaustive search. In each case, we obtained a sample of combinations of weighting parameters with a measure of their quality, i.e., the similarity between the automatic trajectory they lead to and the one manually planned by the surgeon as a reference. Visual and statistical analyses were performed on the number of occurrences and on the rank means. RESULTS: We performed our study on 56 retrospective cases from two different hospitals. We could observe a trend of the occurrence of each weight on the number of occurrences. We also proved that each weight had a significant influence on the ranking. Additionally, we observed no influence of the medical center parameters, suggesting that the trends were comparable in both hospitals. Finally, the obtained trends were confronted to the usual weights chosen by the community, showing some common points but also some discrepancies. CONCLUSION: The results tend to show a predominance of the choice of a trajectory close to a standard direction. Secondly, the avoidance of the vessels or sulci seems to be sought in the surroundings of the standard position. The avoidance of the ventricles seems to be less predominant, but this could be due to the already reasonable distance between the standard direction and the ventricles. The similarity of results between two medical centers tends to show that it is not an exceptional practice. These results suggest that manual planning software may introduce a bias in the planning by proposing a standard position.


Assuntos
Encefalopatias/cirurgia , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Cirurgia Assistida por Computador/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Neuronavegação/métodos , Período Pré-Operatório , Estudos Retrospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...