Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14087, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982220

RESUMO

Immune checkpoint blockade (ICB) leads to durable and complete tumour regression in some patients but in others gives temporary, partial or no response. Accordingly, significant efforts are underway to identify tumour-intrinsic mechanisms underlying ICB resistance. Results from a published CRISPR screen in a mouse model suggested that targeting STUB1, an E3 ligase involved in protein homeostasis, may overcome ICB resistance but the molecular basis of this effect remains unclear. Herein, we report an under-appreciated role of STUB1 to dampen the interferon gamma (IFNγ) response. Genetic deletion of STUB1 increased IFNGR1 abundance on the cell surface and thus enhanced the downstream IFNγ response as showed by multiple approaches including Western blotting, flow cytometry, qPCR, phospho-STAT1 assay, immunopeptidomics, proteomics, and gene expression profiling. Human prostate and breast cancer cells with STUB1 deletion were also susceptible to cytokine-induced growth inhibition. Furthermore, blockade of STUB1 protein function recapitulated the STUB1-null phenotypes. Despite these encouraging in vitro data and positive implications from clinical datasets, we did not observe in vivo benefits of inactivating Stub1 in mouse syngeneic tumour models-with or without combination with anti-PD-1 therapy. However, our findings elucidate STUB1 as a barrier to IFNγ sensing, prompting further investigations to assess if broader inactivation of human STUB1 in both tumors and immune cells could overcome ICB resistance.


Assuntos
Interferon gama , Neoplasias , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Espaço Intracelular/metabolismo , Masculino , Camundongos , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(26): 2830-5, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19570730

RESUMO

Lipids play important and diverse roles in cells. Most obvious functions are storage of chemical energy, provision of structural support of biological membranes and signaling. All these cellular processes are of critical relevance to cells which undergo transformation, cancer progression and metastasis. Thus, it is likely that certain classes of lipids are reflective for the cellular physiology in cancer cells and tissue. Here we discuss key roles of lipids involved in cancer as well as challenges for development of novel lipid-based biomarkers. Special emphasis will be given to mass spectrometry based analysis of lipids. Such technology has been successfully used for qualitative and quantitative analysis of lipids with very different chemistries. Comparative analysis, often in case-control regimes, and either in non-targeted (e.g. by liquid chromatography-single stage mass spectrometry) or targeted (i.e. by tandem mass spectrometry) fashion yields vast arrays of information. Uni-variate (such as Student's t-test or Mann-Whitney U-test) and multivariate statistics (principal components analysis, machine learning and regression analysis) are next used to identify variations in individual lipid species and/or to lower dimensions for visualization and grouping of cases and controls. As a result surrogate (single or multi-parameter) markers are identified which form the basis for functional validation as well as potential translation to alternative analytical readouts.


Assuntos
Biomarcadores/análise , Lipídeos/análise , Neoplasias/química , Animais , Biomarcadores/metabolismo , Humanos , Metabolismo dos Lipídeos , Neoplasias/metabolismo
3.
Oncogene ; 23(1): 157-67, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-14712221

RESUMO

The chemokine-CXCL12 and its receptor, CXCR4, have recently been shown to play an important role in regulating the directional migration of breast cancer cells to sites of metastasis. In the present study, we showed that CXCL12 enhanced the chemotaxis, chemoinvasion and adhesive properties of breast cancer cells; parameters that are critical for development of metastasis. We have also evaluated the signaling mechanisms that regulate CXCL12-induced and CXCR4-mediated breast cancer cell motility and invasion. These studies revealed that CXCL12 induces the tyrosine phosphorylation of focal adhesion kinase (FAK) at residues 397 and 577, and of RAFTK/Pyk2 at residues 402 and 579/580. The cytoskeletal proteins paxillin and Crk, as well as tyrosine phosphatase SHP2 and adaptor protein Cbl, were also phosphorylated. CXCL12 induced the activation of PI 3-kinase, and increased its association with Cbl and SHP2. PI 3-kinase, RAFTK/Pyk2 and tyrosine phosphatase inhibitors significantly blocked CXCL12-induced chemotaxis and chemoinvasion. The role of SHP2 and Cbl in CXCL12-induced chemotaxis and chemoinvasion in breast cancer cells was further defined by transiently overexpressing wild-type SHP2, wild-type Cbl, dominant-negative SHP2, Cbl mutants 70Z/3 and G306E or double transfectants of the Cbl and SHP2 constructs. We found a novel role of Cbl in CXCL12-induced chemotaxis, which may be mediated through the activation and formation of a multimeric complex comprised of Cbl, SHP2 and PI 3-kinase. We also observed the activation of matrix metalloproteinases 2 and 9 upon CXCL12 stimulation. These studies provide new information regarding signaling pathways that may regulate CXCL12-induced metastasis in breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Quimiotaxia , Metástase Neoplásica , Receptores CXCR4/fisiologia , Adesão Celular , Linhagem Celular Tumoral , Quimiocina CXCL12 , Quimiocinas CXC/farmacologia , Feminino , Quinase 1 de Adesão Focal , Quinase 2 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/fisiologia , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...