Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 71(4): 884-897, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28075480

RESUMO

In flowering plants, shifts from outcrossing to partial or complete self-fertilization have occurred independently thousands of times, yet the underlying adaptive processes are difficult to discern. Selfing's ability to provide reproductive assurance when pollination is uncertain is an oft-cited ecological explanation for its evolution, but this benefit may be outweighed by costs diminishing its selective advantage over outcrossing. We directly studied the fitness effects of a self-compatibility mutation that was backcrossed into a self-incompatible (SI) population of Leavenworthia alabamica, illuminating the direction and magnitude of selection on the mating-system modifier. In array experiments conducted in two years, self-compatible (SC) plants produced 17-26% more seed, but this advantage was counteracted by extensive seed discounting-the replacement of high-quality outcrossed seeds by selfed seeds. Using a simple model and simulations, we demonstrate that SC mutations with these attributes rarely spread to high frequency in natural populations, unless inbreeding depression falls below a threshold value (0.57 ≤ δthreshold ≤ 0.70) in SI populations. A combination of heavy seed discounting and inbreeding depression likely explains why outcrossing adaptations such as self-incompatibility are maintained generally, despite persistent input of selfing mutations, and frequent limits on outcross seed production in nature.


Assuntos
Brassicaceae/fisiologia , Aptidão Genética , Mutação , Polinização , Autofertilização , Alabama , Animais , Brassicaceae/genética , Insetos/fisiologia , Pólen , Sementes/crescimento & desenvolvimento
2.
Evolution ; 69(5): 1191-207, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-25873258

RESUMO

Character displacement is a potentially important process driving trait evolution and species diversification. Floral traits may experience character displacement in response to pollinator-mediated competition (ecological character displacement) or the risk of forming hybrids with reduced fitness (reproductive character displacement). We test these and alternative hypotheses to explain a yellow-white petal color polymorphism in Leavenworthia stylosa, where yellow morphs are spatially associated with a white-petaled congener (Leavenworthia exigua) that produces hybrids with complete pollen sterility. A reciprocal transplant experiment found limited evidence of local adaptation of yellow color morphs via increased survival and seed set. Pollinator observations revealed that Leavenworthia attract various pollinators that generally favor white petals and exhibit color constancy. Pollen limitation experiments showed that yellow petals do not alleviate competition for pollination. Interspecific pollinator movements were infrequent and low hybridization rates (∼0.40-0.85%) were found in each morph, with natural rates likely being lower. Regardless, hybridization rates were significantly higher in white morphs of L. stylosa, yielding a small selection coefficient of s = 0.0042 against this phenotype in sympatry with L. exigua. These results provide support for RCD as a mechanism contributing to the pattern of petal color polymorphism in L. stylosa.


Assuntos
Brassicaceae/genética , Flores/genética , Especiação Genética , Pigmentação/genética , Polimorfismo Genético , Seleção Genética , Evolução Molecular , Infertilidade das Plantas/genética , Polinização , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...