Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Part Fibre Toxicol ; 15(1): 22, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769147

RESUMO

BACKGROUND: Commercial use of carbon nanotubes and nanofibers (CNT/F) in composites and electronics is increasing; however, little is known about health effects among workers. We conducted a cross-sectional study among 108 workers at 12 U.S. CNT/F facilities. We evaluated chest symptoms or respiratory allergies since starting work with CNT/F, lung function, resting blood pressure (BP), resting heart rate (RHR), and complete blood count (CBC) components. METHODS: We conducted multi-day, full-shift sampling to measure background-corrected elemental carbon (EC) and CNT/F structure count concentrations, and collected induced sputum to measure CNT/F in the respiratory tract. We measured (nonspecific) fine and ultrafine particulate matter mass and count concentrations. Concurrently, we conducted physical examinations, BP measurement, and spirometry, and collected whole blood. We evaluated associations between exposures and health measures, adjusting for confounders related to lifestyle and other occupational exposures. RESULTS: CNT/F air concentrations were generally low, while 18% of participants had evidence of CNT/F in sputum. Respiratory allergy development was positively associated with inhalable EC (p=0.040) and number of years worked with CNT/F (p=0.008). No exposures were associated with spirometry-based metrics or pulmonary symptoms, nor were CNT/F-specific metrics related to BP or most CBC components. Systolic BP was positively associated with fine particulate matter (p-values: 0.015-0.054). RHR was positively associated with EC, at both the respirable (p=0.0074) and inhalable (p=0.0026) size fractions. Hematocrit was positively associated with the log of CNT/F structure counts (p=0.043). CONCLUSIONS: Most health measures were not associated with CNT/F. The positive associations between CNT/F exposure and respiratory allergies, RHR, and hematocrit counts may not be causal and require examination in other studies.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Exposição Ocupacional/análise , Sistema Respiratório/efeitos dos fármacos , Adulto , Idoso , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/farmacocinética , Biomarcadores/sangue , Contagem de Células Sanguíneas , Estudos Transversais , Feminino , Humanos , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Nanofibras/análise , Nanotubos de Carbono/análise , Testes de Função Respiratória , Escarro/química , Inquéritos e Questionários
2.
Environ Int ; 116: 214-228, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29698898

RESUMO

BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) are increasingly used for diverse applications. Although animal studies suggest CNT/F exposure may cause deleterious health effects, human epidemiological studies have typically been small, confined to single workplaces, and limited in exposure assessment. OBJECTIVES: We conducted an industrywide cross-sectional epidemiological study of 108 workers from 12 U.S. sites to evaluate associations between occupational CNT/F exposure and sputum and blood biomarkers of early effect. METHODS: We assessed CNT/F exposure via personal breathing zone, filter-based air sampling to measure background-corrected elemental carbon (EC) (a CNT/F marker) mass and microscopy-based CNT/F structure count concentrations. We measured 36 sputum and 37 blood biomarkers. We used factor analyses with varimax rotation to derive factors among sputum and blood biomarkers separately. We used linear, Tobit, and unconditional logistic regression models to adjust for potential confounders and evaluate associations between CNT/F exposure and individual biomarkers and derived factors. RESULTS: We derived three sputum and nine blood biomarker factors that explained 78% and 67%, respectively, of the variation. After adjusting for potential confounders, inhalable EC and total inhalable CNT/F structures were associated with the most sputum and blood biomarkers, respectively. Biomarkers associated with at least three CNT/F metrics were 72 kDa type IV collagenase/matrix metalloproteinase-2 (MMP-2), interleukin-18, glutathione peroxidase (GPx), myeloperoxidase, and superoxide dismutase (SOD) in sputum and MMP-2, matrix metalloproteinase-9, metalloproteinase inhibitor 1/tissue inhibitor of metalloproteinases 1, 8-hydroxy-2'-deoxyguanosine, GPx, SOD, endothelin-1, fibrinogen, intercellular adhesion molecule 1, vascular cell adhesion protein 1, and von Willebrand factor in blood, although directions of associations were not always as expected. CONCLUSIONS: Inhalable rather than respirable CNT/F was more consistently associated with fibrosis, inflammation, oxidative stress, and cardiovascular biomarkers.


Assuntos
Biomarcadores/análise , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos , Escarro/química , Biomarcadores/sangue , Estudos Transversais , Humanos , Estados Unidos/epidemiologia
3.
Int J Hyg Environ Health ; 221(3): 429-440, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339022

RESUMO

BACKGROUND: Recent animal studies have suggested the potential for wide-ranging health effects resulting from exposure to carbon nanotubes and nanofibers (CNT/F). To date, no studies in the US have directly examined the relationship between occupational exposure and potential human health effects. OBJECTIVES: Our goal was to measure CNT/F exposures among US workers with representative job types, from non-exposed to highly exposed, for an epidemiologic study relating exposure to early biologic effects. METHODS: 108 participants were enrolled from 12 facilities across the US. Personal, full-shift exposures were assessed based on the mass of elemental carbon (EC) at the respirable and inhalable aerosol particle size fractions, along with quantitatively characterizing CNT/F and estimating particle size via transmission electron microscopy (TEM). Additionally, sputum and dermal samples were collected and analyzed to determine internal exposures and exposures to the hands/wrists. RESULTS: The mean exposure to EC was 1.00 µg/m3 at the respirable size fraction and 6.22 µg/m3 at the inhalable fraction. Analysis by TEM found a mean exposure of 0.1275 CNT/F structures/cm3, generally to agglomerated materials between 2 and 10 µm. Internal exposures to CNT/F via sputum analysis were confirmed in 18% of participants while ∼70% had positive dermal exposures. CONCLUSIONS: We demonstrated the occurrence of a broad range of exposures to CNT/F within 12 facilities across the US. Analysis of collected sputum indicated internal exposures are currently occurring within the workplace. This is an important first step in determining if exposures in the workforce have any acute or lasting health effects.


Assuntos
Poluentes Ocupacionais do Ar/análise , Indústrias , Exposição por Inalação/análise , Nanofibras , Nanotubos de Carbono , Exposição Ocupacional/análise , Tamanho da Partícula , Poluentes Ocupacionais do Ar/efeitos adversos , Carbono/efeitos adversos , Estudos Transversais , Monitoramento Ambiental , Humanos , Exposição por Inalação/efeitos adversos , Microscopia Eletrônica de Transmissão , Nanofibras/efeitos adversos , Nanofibras/análise , Nanotubos de Carbono/efeitos adversos , Nanotubos de Carbono/análise , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Ocupações , Doenças Respiratórias/etiologia , Dermatopatias/etiologia , Escarro , Estados Unidos , Trabalho , Local de Trabalho
4.
Toxicol Pathol ; 46(1): 47-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145781

RESUMO

This is the first utilization of advanced analytical electron microscopy methods, including high-resolution transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, electron energy loss spectroscopy, and energy-dispersive X-ray spectroscopy mapping to characterize the organ-specific bioprocessing of a relatively inert nanomaterial (nanoceria). Liver and spleen samples from rats given a single intravenous infusion of nanoceria were obtained after prolonged (90 days) in vivo exposure. These advanced analytical electron microscopy methods were applied to elucidate the organ-specific cellular and subcellular fate of nanoceria after its uptake. Nanoceria is bioprocessed differently in the spleen than in the liver.


Assuntos
Cério/toxicidade , Fígado/efeitos dos fármacos , Microscopia Eletrônica/métodos , Baço/efeitos dos fármacos , Animais , Fígado/patologia , Fígado/ultraestrutura , Masculino , Ratos , Ratos Sprague-Dawley , Baço/patologia , Baço/ultraestrutura
5.
Combust Flame ; 167: 218-227, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27468178

RESUMO

There is a concern that engineered carbon nanoparticles, when manufactured on an industrial scale, will pose an explosion hazard. Explosion testing has been performed on 20 codes of carbonaceous powders. These include several different codes of SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes) and CNFs (carbon nanofibers), graphene, diamond, fullerene, as well as several different control carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226 protocol), at a concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples typically exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dP/dt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1. There is minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with primary particle size (BET specific surface area).

6.
Ann Occup Hyg ; 59(6): 705-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25851309

RESUMO

Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P < 0.0001). Overall, EC PBZ and area TWA samples were below the NIOSH REL (96% were <1 µg m(-3) at the respirable size fraction), while 30% of the inhalable PBZ EC samples were found to be >1 µg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF materials by monitoring EC at both the respirable and inhalable size fractions. Concurrent TEM samples should be collected to confirm the presence of CNT and CNF.


Assuntos
Nanofibras/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Humanos , Indústrias , Exposição por Inalação/análise , Microscopia Eletrônica de Transmissão , National Institute for Occupational Safety and Health, U.S. , Tamanho da Partícula , Estados Unidos
7.
Am J Ind Med ; 58(5): 494-508, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25675894

RESUMO

BACKGROUND: Airborne fiber size has been shown to be an important factor relative to adverse lung effects of asbestos and suggested in animal studies of carbon nanotubes and nanofibers (CNT/CNF). MATERIALS AND METHODS: The International Standards Organization (ISO) transmission electron microscopy (TEM) method for asbestos was modified to increase the statistical precision of fiber size determinations, improve efficiency, and reduce analysis costs. Comparisons of the fiber size distributions and exposure indices by laboratory and counting method were performed. RESULTS: No significant differences in size distributions by the ISO and modified ISO methods were observed. Small but statistically-significant inter-lab differences in the proportion of fibers in some size bins were found, but these differences had little impact on the summary exposure indices. The modified ISO method produced slightly more precise estimates of the long fiber fraction (>15 µm). CONCLUSIONS: The modified ISO method may be useful for estimating size-specific structure exposures, including CNT/CNF, for risk assessment research.


Assuntos
Poluentes Ocupacionais do Ar/análise , Amianto/análise , Microscopia Eletrônica de Transmissão/métodos , Nanofibras/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Tamanho da Partícula , Monitoramento Ambiental/métodos , Humanos , Medição de Risco
8.
Part Fibre Toxicol ; 10(1): 53, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144386

RESUMO

BACKGROUND: Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. RESULTS: Upon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 µg/m3 (geometric mean 4.21 µg/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 µg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose. CONCLUSION: These findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level.


Assuntos
Relação Dose-Resposta a Droga , Nanotubos de Carbono , Exposição Ocupacional , Animais , Humanos , Exposição por Inalação , Camundongos , Microscopia Eletrônica
9.
J Clin Toxicol ; Suppl 52012.
Artigo em Inglês | MEDLINE | ID: mdl-26702365

RESUMO

Single-walled carbon nanotubes (SWCNTs) are newly discovered material of crystalline carbon that forms single-carbon layer cylinders with nanometer diameters and varying lengths. Although SWCNTs are potentially suitable for a range of novel applications, their extremely small size, fiber-like shape, large surface area, and unique surface chemistry raise potential hazard to humans, including lung toxicity and fibrosis. The molecular mechanisms by which SWCNTs cause lung damage remain elusive. Here we show that SWCNTs dose and time-dependently caused toxicity in cultured human bronchial epithelial (BEAS-2B), alveolar epithelial (A549), and lung fibroblast (WI38) cells. At molecular levels, SWCNTs induced significant mitochondrial depolarization and ROS production at subtoxic doses. SWCNTs stimulated the secretion of proinflammatory cytokines and chemokines TNFα, IL-1ß, IL-6, IL-10 and MCP1 from macrophages (Raw 264.7), which was attributed to the activation of the canonical signaling pathway of NF-κB by SWCNT. Finally, SWCNTs stimulated profibrogenic growth factors TGFß1 production and fibroblast-to-myofibroblast-transformation. These results indicate that SWCNTs has a potential to induce human lung damage and fibrosis by damaging mitochondria, generating ROS, and stimulating production of proinflammatory and profibrogenic cytokines and growth factors.

10.
Ann Occup Hyg ; 56(5): 542-56, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22156567

RESUMO

UNLABELLED: RESEARCH SIGNIFICANCE: Toxicological evidence suggests the potential for a wide range of health effects, which could result from exposure to carbon nanotubes (CNTs) and carbon nanofibers (CNFs). The National Institute for Occupational Safety and Health (NIOSH) has proposed a recommended exposure limit (REL) for CNTs/CNFs at the respirable size fraction. The current literature is lacking exposure information, with few studies reporting results for personal breathing zone (PBZ) samples in occupational settings. To address this gap, exposure assessments were conducted at six representative sites identified as CNT/CNF primary or secondary manufacturers. METHODS: Personal and area filter-based samples were collected for both the inhalable mass concentration and the respirable mass concentration of elemental carbon (EC) as well as CNT structure count analysis by transmission electron microscopy to assess exposures. When possible, full-shift PBZ samples were collected; area samples were collected on a task-based approach. RESULTS: The vast majority of samples collected in this study were below the proposed REL (7 µg m(-3)). Two of the three secondary manufacturers' surveyed found concentrations above the proposed REL. None of the samples collected at primary manufacturers were found to be above the REL. Visual and microscopy-based evidence of CNTs/CNFs were found at all sites, with the highest CNT/CNF structure counts being found in samples collected at secondary manufacturing sites. The statistical correlations between the filter-based samples for the mass concentration of EC and CNT structure counts were examined. A general trend was found with a P-value of 0.01 and a corresponding Pearson correlation coefficient of 0.44. CONCLUSIONS: CNT/CNF concentrations were above the proposed NIOSH REL for PBZ samples in two secondary manufacturing facilities that use these materials for commercial applications. These samples were collected during dry powder handling processes, such as mixing and weighing, using fairly large quantities of CNTs/CNFs.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Nanofibras/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Aerossóis/análise , Poluentes Ocupacionais do Ar/efeitos adversos , Animais , Filtração , Humanos , Indústrias/normas , Indústrias/estatística & dados numéricos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/estatística & dados numéricos , Limite de Detecção , Camundongos , Microscopia Eletrônica de Transmissão , Nanofibras/efeitos adversos , Nanotubos de Carbono/efeitos adversos , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/normas , Exposição Ocupacional/estatística & dados numéricos , Tamanho da Partícula , Estados Unidos
11.
Chem Res Toxicol ; 24(12): 2237-48, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22081859

RESUMO

Carbon nanotubes (CNTs) are novel materials with unique electronic and mechanical properties. The extremely small size, fiberlike shape, large surface area, and unique surface chemistry render their distinctive chemical and physical characteristics and raise potential hazards to humans. Several reports have shown that pulmonary exposure to CNTs caused inflammation and lung fibrosis in rodents. The molecular mechanisms that govern CNT lung toxicity remain largely unaddressed. Here, we report that multiwalled carbon nanotubes (MWCNTs) have potent, dose-dependent toxicity on cultured human lung cells (BEAS-2B, A549, and WI38-VA13). Mechanistic analyses were carried out at subtoxic doses (≤20 µg/mL, ≤ 24 h). MWCNTs induced substantial ROS production and mitochondrial damage, implicating oxidative stress in cellular damage by MWCNT. MWCNTs activated the NF-κB signaling pathway in macrophages (RAW264.7) to increase the secretion of a panel of cytokines and chemokines (TNFα, IL-1ß, IL-6, IL-10, and MCP1) that promote inflammation. Activation of NF-κB involved rapid degradation of IκBα, nuclear accumulation of NF-κBp65, binding of NF-κB to specific DNA-binding sequences, and transactivation of target gene promoters. Finally, MWCNTs induced the production of profibrogenic growth factors TGFß1 and PDGF from macrophages that function as paracrine signals to promote the transformation of lung fibroblasts (WI38-VA13) into myofibroblasts, a key step in the development of fibrosis. Our results revealed that MWCNTs elicit multiple and intertwining signaling events involving oxidative damage, inflammatory cytokine production, and myofibroblast transformation, which potentially underlie the toxicity and fibrosis in human lungs by MWCNTs.


Assuntos
Fibroblastos/citologia , Miofibroblastos/citologia , NF-kappa B/metabolismo , Nanotubos de Carbono/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibrose/fisiopatologia , Humanos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ligação Proteica , Fator de Transcrição RelA/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
J Occup Environ Hyg ; 6(12): 735-44, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19894174

RESUMO

Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from < 32 microm up to 212 microm) using dilute aqueous ammonium bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity of the BeO material. Comparison of dissolution kinetics data shows that as particle diameter approximately doubles, extraction time is increased by a factor of about 1.5, which is consistent with the influence of porosity on dissolution.


Assuntos
Berílio/química , Fracionamento Químico/métodos , Fluoretos/química , Compostos de Amônio Quaternário/química , Compostos de Amônio , Berílio/isolamento & purificação , Monitoramento Ambiental , Cinética , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectrometria de Fluorescência/métodos , Temperatura
13.
Ann Occup Hyg ; 53(3): 215-24, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19126624

RESUMO

In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 microm, diameter >0.01 microm and aspect ratios > or =3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length approximately 3 microm and diameter approximately 0.3 microm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter < or = 10 microm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting 'B' rules (length > 5 microm, diameter < 3 microm and aspect ratio > or = 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm(-3), with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in this occupational setting needs to be confirmed in similar settings and demonstrates the need to obtain information on the durability and associated health effects of these fibers.


Assuntos
Poluentes Ocupacionais do Ar/análise , Metalurgia , Material Particulado/análise , Tungstênio/análise , Monitoramento Ambiental/métodos , Humanos , Modelos Estatísticos , Saúde Ocupacional , Tamanho da Partícula , Estados Unidos
14.
J Occup Environ Hyg ; 5(7): 463-74, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18569509

RESUMO

In tungsten refining and manufacturing processes, a series of tungsten oxides (WO(X)) are typically formed as intermediates in the production of tungsten powder. Studies in the Swedish tungsten refining and manufacturing industry have shown that intermediate tungsten refining processes can create WO(X) fibers. The purpose of the present study was to identify and provide a preliminary characterization of airborne tungsten-containing fiber dimensions, elemental composition, and concentrations in the U.S. tungsten refining and manufacturing industry. To provide the preliminary characterization, 10 static air samples were collected during the course of normal employee work activities and analyzed using standard fiber sampling and counting methods. Results from transmission electron microscopy analyses conducted indicate that airborne fibers with length > 0.5 microm, diameter > 0.01 microm, and aspect ratio > or = 3:1, with a geometric mean (GM) length of approximately 2.0 microm and GM diameter of approximately 0.25 microm, were present on 9 of the 10 air samples collected. Energy dispersive X-ray spectrometry results indicate that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Results from an air sample collected at the carburization process indicated the presence of fibers composed primarily of tungsten with oxygen and carbon, and traces of other elements. Based on National Institute for Occupational Safety and Health standard fiber counting rules, airborne fiber concentrations ranged from below the limit of detection to 0.14 f/cm(3). The calcining process was associated with the highest airborne fiber concentrations. More than 99% (574/578) of the airborne fibers identified had an aerodynamic diameter

Assuntos
Poluentes Ocupacionais do Ar/análise , Exposição Ocupacional/análise , Tungstênio/análise , Poluentes Ocupacionais do Ar/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Humanos , Exposição por Inalação/efeitos adversos , Funções Verossimilhança , Pneumopatias/induzido quimicamente , Metalurgia , Filtros Microporos , Microscopia Eletrônica de Transmissão , Fibras Minerais/efeitos adversos , Fibras Minerais/análise , National Institute for Occupational Safety and Health, U.S. , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/normas , Tungstênio/efeitos adversos , Estados Unidos
15.
J Occup Environ Hyg ; 4(3): 215-23, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17237027

RESUMO

A standardized procedure for collecting dust samples from surfaces using a micro-vacuum sampling technique was evaluated. Experiments were carried out to investigate the collection efficiency of the vacuum sampling method described in ASTM Standard D7144, "Standard Practice for Collection of Surface Dust by Micro-Vacuum Sampling for Subsequent Metals Determination." Weighed masses ( approximately 5, approximately 10 and approximately 25 mg) of three NIST Standard Reference Materials (SRMs) were spiked onto surfaces of various substrates. The SRMs used were: (1) Powdered Lead-Based Paint; (2) Urban Particulate Matter; and (3) Trace Elements in Indoor Dust. Twelve different substrate materials were chosen to be representative of surfaces commonly encountered in occupational and/or indoor settings: (1) wood, (2) tile, (3) linoleum, (4) vinyl, (5) industrial carpet, (6) plush carpet, (7,8) concrete block (painted and unpainted), (9) car seat material, (10) denim, (11) steel, and (12) glass. Samples of SRMs originally spiked onto these surfaces were collected using the standardized micro-vacuum sampling procedure. Gravimetric analysis of material collected within preweighed Accucapinserts (housed within the samplers) was used to measure SRM recoveries. Recoveries ranged from 21.6% (+/- 10.4%, 95% confidence limit [CL]) for SRM 1579 from industrial carpet to 59.2% (+/- 11.0%, 95% CL) for SRM 1579 from glass. For most SRM/substrate combinations, recoveries ranged from approximately 25% to approximately 50%; variabilities differed appreciably. In general, SRM recoveries were higher from smooth and hard surfaces and lower from rough and porous surfaces. Material captured within collection nozzles attached to the sampler inlets was also weighed. A significant fraction of SRM originally spiked onto substrate surfaces was captured within collection nozzles. Percentages of SRMs captured within collection nozzles ranged from approximately 13% (+/- 4 - +/- 5%, 95% CLs) for SRMs 1579 and 2583 from industrial carpet to approximately 45% (+/- 7 - +/- 26%, 95% CLs) for SRM 1648 from glass, tile and steel. For some substrates, loose material from the substrate itself (i.e., substrate particles and fibers) was sometimes collected along with the SRM, both within Accucaps as well as collection nozzles. Co-collection of substrate material can bias results and contribute to sampling variability. The results of this work have provided performance data on the standardized micro-vacuum sampling procedure.


Assuntos
Técnicas de Química Analítica/métodos , Poeira/análise , Monitoramento Ambiental/métodos , Manejo de Espécimes/métodos , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Humanos , Microscopia Eletrônica , Saúde Ocupacional , Padrões de Referência , Sensibilidade e Especificidade , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...