Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neural Syst ; 32(10): 2202001, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36073507
2.
Front Neuroinform ; 12: 29, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910722

RESUMO

The anticipatory recognition of braking is essential to prevent traffic accidents. For instance, driving assistance systems can be useful to properly respond to emergency braking situations. Moreover, the response time to emergency braking situations can be affected and even increased by different driver's cognitive states caused by stress, fatigue, and extra workload. This work investigates the detection of emergency braking from driver's electroencephalographic (EEG) signals that precede the brake pedal actuation. Bioelectrical signals were recorded while participants were driving in a car simulator while avoiding potential collisions by performing emergency braking. In addition, participants were subjected to stress, workload, and fatigue. EEG signals were classified using support vector machines (SVM) and convolutional neural networks (CNN) in order to discriminate between braking intention and normal driving. Results showed significant recognition of emergency braking intention which was on average 71.1% for SVM and 71.8% CNN. In addition, the classification accuracy for the best participant was 80.1 and 88.1% for SVM and CNN, respectively. These results show the feasibility of incorporating recognizable driver's bioelectrical responses into advanced driver-assistance systems to carry out early detection of emergency braking situations which could be useful to reduce car accidents.

3.
Front Neuroinform ; 11: 56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970792

RESUMO

Aim: The research described is intended to give a description of articulation dynamics as a correlate of the kinematic behavior of the jaw-tongue biomechanical system, encoded as a probability distribution of an absolute joint velocity. This distribution may be used in detecting and grading speech from patients affected by neurodegenerative illnesses, as Parkinson Disease. Hypothesis: The work hypothesis is that the probability density function of the absolute joint velocity includes information on the stability of phonation when applied to sustained vowels, as well as on fluency if applied to connected speech. Methods: A dataset of sustained vowels recorded from Parkinson Disease patients is contrasted with similar recordings from normative subjects. The probability distribution of the absolute kinematic velocity of the jaw-tongue system is extracted from each utterance. A Random Least Squares Feed-Forward Network (RLSFN) has been used as a binary classifier working on the pathological and normative datasets in a leave-one-out strategy. Monte Carlo simulations have been conducted to estimate the influence of the stochastic nature of the classifier. Two datasets for each gender were tested (males and females) including 26 normative and 53 pathological subjects in the male set, and 25 normative and 38 pathological in the female set. Results: Male and female data subsets were tested in single runs, yielding equal error rates under 0.6% (Accuracy over 99.4%). Due to the stochastic nature of each experiment, Monte Carlo runs were conducted to test the reliability of the methodology. The average detection results after 200 Montecarlo runs of a 200 hyperplane hidden layer RLSFN are given in terms of Sensitivity (males: 0.9946, females: 0.9942), Specificity (males: 0.9944, females: 0.9941) and Accuracy (males: 0.9945, females: 0.9942). The area under the ROC curve is 0.9947 (males) and 0.9945 (females). The equal error rate is 0.0054 (males) and 0.0057 (females). Conclusions: The proposed methodology avails that the use of highly normalized descriptors as the probability distribution of kinematic variables of vowel articulation stability, which has some interesting properties in terms of information theory, boosts the potential of simple yet powerful classifiers in producing quite acceptable detection results in Parkinson Disease.

4.
Front Neuroinform ; 11: 77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375359

RESUMO

Machine learning and artificial intelligence have strong roots on principles of neural computation. Some examples are the structure of the first perceptron, inspired in the retina, neuroprosthetics based on ganglion cell recordings or Hopfield networks. In addition, machine learning provides a powerful set of tools to analyze neural data, which has already proved its efficacy in so distant fields of research as speech recognition, behavioral states classification, or LFP recordings. However, despite the huge technological advances in neural data reduction of dimensionality, pattern selection, and clustering during the last years, there has not been a proportional development of the analytical tools used for Time-Frequency (T-F) analysis in neuroscience. Bearing this in mind, we introduce the convenience of using non-linear, non-stationary tools, EMD algorithms in particular, for the transformation of the oscillatory neural data (EEG, EMG, spike oscillations…) into the T-F domain prior to its analysis with machine learning tools. We support that to achieve meaningful conclusions, the transformed data we analyze has to be as faithful as possible to the original recording, so that the transformations forced into the data due to restrictions in the T-F computation are not extended to the results of the machine learning analysis. Moreover, bioinspired computation such as brain-machine interface may be enriched from a more precise definition of neuronal coding where non-linearities of the neuronal dynamics are considered.

5.
J Neurosci Methods ; 148(2): 137-46, 2005 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-15970333

RESUMO

The number of laboratories using techniques that allow to acquire simultaneous recordings of as many units as possible is considerably increasing. However, the development of tools used to analyse this multi-neuronal activity is generally lagging behind the development of the tools used to acquire these data. Moreover, the data exchange between research groups using different multielectrode acquisition systems is hindered by commercial constraints such as exclusive file structures, high priced licenses and hard policies on intellectual rights. This paper presents a free open-source software for the classification and management of neural ensemble data. The main goal is to provide a graphical user interface that links the experimental data to a basic set of routines for analysis, visualization and classification in a consistent framework. To facilitate the adaptation and extension as well as the addition of new routines, tools and algorithms for data analysis, the source code and documentation are freely available.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Eletrofisiologia/métodos , Neurofisiologia/métodos , Processamento de Sinais Assistido por Computador , Software/tendências , Animais , Comportamento Cooperativo , Coleta de Dados/normas , Coleta de Dados/tendências , Técnicas In Vitro , Metanálise como Assunto , Microeletrodos/normas , Coelhos , Células Ganglionares da Retina/fisiologia , Software/normas , Transmissão Sináptica/fisiologia , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...