Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-454861

RESUMO

SARS-CoV-2 variants display enhanced transmissibility and/or immune evasion and can be generated in humans or animals, like minks, thus generating new reservoirs. The continuous surveillance of animal susceptibility to new variants is necessary to predict pandemic evolution. In this study we demonstrate that, compared to the B.1 SARS-CoV-2 variant, K18-hACE2 transgenic mice challenged with the B.1.351 variant displayed a faster progression of infection. Furthermore, we also report that B.1.351 can establish infection in wildtype mice, while B.1 cannot. B.1.351-challenged wildtype mice showed a milder infection than transgenic mice, confirmed by detectable viral loads in oropharyngeal swabs and tissues, lung pathology, immunohistochemistry and serology. In silico models supported these findings by demonstrating that the Spike mutations in B.1.351 resulted in increased affinity for both human and murine ACE2 receptors. Overall, this study highlights the plasticity of SARS-CoV-2 animal susceptibility landscape, which may contribute to viral persistence and expansion.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261921

RESUMO

BackgroundUnderstanding the determinants of long-term immune responses to SARS-CoV-2 and the concurrent impact of vaccination and emerging variants of concern will guide optimal strategies to achieve global protection against the COVID-19 pandemic. MethodsA prospective cohort of 332 COVID-19 patients was followed beyond one year. Plasma neutralizing activity was evaluated using HIV-based reporter pseudoviruses expressing different SARS-CoV-2 spikes and was longitudinally analyzed using mixed-effects models. FindingsLong-term neutralizing activity was stable beyond one year after infection in mild/asymptomatic and hospitalized participants. However, longitudinal models suggest that hospitalized individuals generate both short- and long-lived memory B cells, while outpatient responses were dominated by long-lived B cells. In both groups, vaccination boosted responses to natural infection, although viral variants, mainly B.1.351, reduced the efficacy of neutralization. Importantly, despite showing higher neutralization titers, hospitalized patients showed lower cross-neutralization of B.1.351 variant compared to outpatients. Multivariate analysis identified severity of primary infection as the factor that independently determines both the magnitude and the inferior cross-neutralization activity of long-term neutralizing responses. ConclusionsNeutralizing response induced by SARS-CoV-2 is heterogeneous in magnitude but stable beyond one year after infection. Vaccination boosts these long-lasting natural neutralizing responses, counteracting the significant resistance to neutralization of new viral variants. Severity of primary infection determines higher magnitude but poorer quality of long-term neutralizing responses.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443572

RESUMO

COVID-19 pandemic is not yet under control by vaccination, and effective antivirals are critical for preparedness. Here we report that macrophages and dendritic cells, key antigen presenting myeloid cells (APCs), are largely resistant to SARS-CoV-2 infection. APCs effectively captured viruses within cellular compartments that lead to antigen degradation. Macrophages sense SARS-CoV-2 and released higher levels of cytokines, including those related to cytokine storm in severe COVID-19. The sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169) present on APCs, which interacts with sialylated gangliosides on membranes of retroviruses or filoviruses, also binds SARS-CoV-2 via GM1. Blockage of Siglec-1 receptors by monoclonal antibodies reduces SARS-CoV-2 uptake and transfer to susceptible target cells. APCs expressing Siglec-1 and carrying SARS-CoV-2 are found in pulmonary tissues of non-human primates. Single cell analysis reveals the in vivo induction of cytokines in those macrophages. Targeting Siglec-1 could offer cross-protection against SARS-CoV-2 and other enveloped viruses that exploit APCs for viral dissemination, including those yet to come in future outbreaks.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-433800

RESUMO

To assess the potential impact of predominant circulating SARS-CoV-2 variants on neutralizing activity of infected and/or vaccinated individuals, we analyzed neutralization of pseudoviruses expressing the spike of the original Wuhan strain, the D614G and B.1.1.7 variants. Our data show that parameters of natural infection (time from infection and infecting variant) determined cross-neutralization. Importantly, upon vaccination, previously infected individuals developed equivalent B.1.1.7 and Wuhan neutralizing responses. In contrast, uninfected vaccinees showed reduced neutralization against B.1.1.7. FundingThis study was funded by Grifols, the Departament de Salut of the Generalitat de Catalunya, the Spanish Health Institute Carlos III, CERCA Programme/Generalitat de Catalunya, and the crowdfunding initiatives #joemcorono, BonPreu/Esclat and Correos.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-389056

RESUMO

Understanding mid-term kinetics of immunity to SARS-CoV-2 is the cornerstone for public health control of the pandemic and vaccine development. However, current evidence is rather based on limited measurements, thus losing sight of the temporal pattern of these changes1-6. In this longitudinal analysis, conducted on a prospective cohort of COVID-19 patients followed up to 242 days, we found that individuals with mild or asymptomatic infection experienced an insignificant decay in neutralizing activity that persisted six months after symptom onset or diagnosis. Hospitalized individuals showed higher neutralizing titers, which decreased following a two-phase pattern, with an initial rapid decline that significantly slowed after day 80. Despite this initial decay, neutralizing activity at six months remained higher among hospitalized individuals. The slow decline in neutralizing activity at mid-term contrasted with the steep slope of antibody titers change, reinforcing the hypothesis that the quality of immune response evolves over the post-convalescent stage4,5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...