Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37048361

RESUMO

Soy is a growing protein source; however, the isoflavones it contains are of concern, as they exhibit estrogenic activities whose toxicological limits might be exceeded. Reducing their concentrations to safe levels while preserving nutritional quality in soy foodstuffs is therefore a matter of public health. The main objective of this paper is to develop at pilot scale a process for isoflavones' extraction from soybeans, and to show its feasibility and efficiency. The study was conducted by first optimizing the previously obtained laboratory treatment key factors. These data were then transposed to the pilot level. Finally, the process was adjusted to technical constraints which appeared at pilot scale: the mandatory use of drenching and the exploration of granulometry analysis. The involved steps were validated by monitoring the genistein and daidzein content variations through statistical analysis of the data of an ELISA and a Folin-Ciocalteu assay. Additionally, isoflavones' recovery from treatment waters for their valorisation and the water cleaning by means of filtration, centrifugation and resin adsorption were carried out. The results showed that the most successful pilot treatment developed involved soybean dehulling, drenching, washing and drying and almost halved isoflavones while preserving the main nutritional characteristics. A combination of techniques led to almost complete recovery of isoflavones from process waters.

2.
Plant Cell ; 35(7): 2615-2634, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052931

RESUMO

Ascorbate (vitamin C) is an essential antioxidant in fresh fruits and vegetables. To gain insight into the regulation of ascorbate metabolism in plants, we studied mutant tomato plants (Solanum lycopersicum) that produce ascorbate-enriched fruits. The causal mutation, identified by a mapping-by-sequencing strategy, corresponded to a knock-out recessive mutation in a class of photoreceptor named PAS/LOV protein (PLP), which acts as a negative regulator of ascorbate biosynthesis. This trait was confirmed by CRISPR/Cas9 gene editing and further found in all plant organs, including fruit that accumulated 2 to 3 times more ascorbate than in the WT. The functional characterization revealed that PLP interacted with the 2 isoforms of GDP-L-galactose phosphorylase (GGP), known as the controlling step of the L-galactose pathway of ascorbate synthesis. The interaction with GGP occurred in the cytoplasm and the nucleus, but was abolished when PLP was truncated. These results were confirmed by a synthetic approach using an animal cell system, which additionally demonstrated that blue light modulated the PLP-GGP interaction. Assays performed in vitro with heterologously expressed GGP and PLP showed that PLP is a noncompetitive inhibitor of GGP that is inactivated after blue light exposure. This discovery provides a greater understanding of the light-dependent regulation of ascorbate metabolism in plants.


Assuntos
Antioxidantes , Galactose , Galactose/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico , Luz , Frutas/genética , Frutas/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Physiol ; 63(1): 120-134, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34665867

RESUMO

The bZIP transcription factor (TF) SlTGA2.2 was previously highlighted as a possible hub in a network regulating fruit growth and transition to ripening (maturation phase). It belongs to a clade of TFs well known for their involvement in the regulation of the salicylic acid-dependent systemic acquired resistance. To investigate if this TGA TF plays a role in tomato fruit growth and maturation, we took advantage of the fruit-specific SlPPC2 promoter (PPC2pro) to target the expression of a SlTGA2.2-SRDX chimeric repressor in a developmental window restricted to early fruit growth and maturation. Here, we show that this SlTGA2.2-SRDX repressor alters early fruit development and metabolism, including chloroplast number and structure, considerably extends the time necessary to reach the mature green stage and slows down fruit ripening. RNA sequencing and plant hormone analyses reveal that PPC2pro:SlTGA2.2-SRDX fruits are maintained in an immature stage as long as PPC2pro is active, through early modifications of plant hormonal signaling and down-regulation of MADS-RIN and NAC-NOR ripening regulators. Once PPC2pro becomes inactive and therefore SlTGA2.2-SRDX expression is reduced, ripening can proceed, albeit at a slower pace than normal. Altogether, this work emphasizes the developmental continuum between fruit growth, maturation and ripening and provides a useful tool to alter and study the molecular bases of tomato fruit transition to ripening.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Filogenia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
4.
J Exp Bot ; 72(8): 3091-3107, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33530105

RESUMO

Ascorbate is a major antioxidant buffer in plants. Several approaches have been used to increase the ascorbate content of fruits and vegetables. Here, we combined forward genetics with mapping-by-sequencing approaches using an ethyl methanesulfonate (EMS)-mutagenized Micro-Tom population to identify putative regulators underlying a high-ascorbate phenotype in tomato fruits. Among the ascorbate-enriched mutants, the family with the highest fruit ascorbate level (P17C5, up to 5-fold wild-type level) had strongly impaired flower development and produced seedless fruit. Genetic characterization was performed by outcrossing P17C5 with cv. M82. We identified the mutation responsible for the ascorbate-enriched trait in a cis-acting upstream open reading frame (uORF) involved in the downstream regulation of GDP-l-galactose phosphorylase (GGP). Using a specific CRISPR strategy, we generated uORF-GGP1 mutants and confirmed the ascorbate-enriched phenotype. We further investigated the impact of the ascorbate-enriched trait in tomato plants by phenotyping the original P17C5 EMS mutant, the population of outcrossed P17C5 × M82 plants, and the CRISPR-mutated line. These studies revealed that high ascorbate content is linked to impaired floral organ architecture, particularly anther and pollen development, leading to male sterility. RNA-seq analysis suggested that uORF-GGP1 acts as a regulator of ascorbate synthesis that maintains redox homeostasis to allow appropriate plant development.


Assuntos
Solanum lycopersicum , Ácido Ascórbico , Fertilidade , Frutas/genética , Solanum lycopersicum/genética , Pólen/genética
5.
Plant J ; 105(4): 907-923, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179365

RESUMO

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Assuntos
Ácido Corísmico/metabolismo , Solanum lycopersicum/metabolismo , Vitamina E/análise , Mapeamento Cromossômico , Frutas/química , Frutas/metabolismo , Genes de Plantas/genética , Engenharia Genética , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Solanum lycopersicum/química , Solanum lycopersicum/genética , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Tirosina/metabolismo , Vitamina E/metabolismo
6.
J Exp Bot ; 67(15): 4767-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27382114

RESUMO

GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues.


Assuntos
Ácido Ascórbico/biossíntese , Carboidratos Epimerases/metabolismo , Parede Celular/metabolismo , Solanum lycopersicum/enzimologia , Carboidratos Epimerases/fisiologia , Parede Celular/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Pólen/metabolismo
7.
Br J Nutr ; 100(4): 722-30, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18384703

RESUMO

In order to study the effects of dietary lipids and vitamin A on the development of adipose tissues, young rats were submitted for 8 d to a control or to two cafeteria diets with normal (Caf) or higher (Caf + ) vitamin A levels. Retinoid (retinoic acid receptor (RAR) a, RARg, retinoid X receptor(RXR) alpha) and fatty acid (PPARgamma) receptor mRNA was measured in the subcutaneous white adipose tissue (Swat) and in isolated mature adipocytes by RT-PCR. The stroma vascular fraction was cultured in vitro to test the capacities of the adipocyte precursors to proliferate and differentiate.The Caf diet enriched in vitamin A resulted in an increased adiposity, due to increased adipocyte hypertrophy. This was concomitant with a lower expression of RARa and RARg mRNA (234.6 and 238.6 %) and a higher expression of PPARgamma (+59 %) in the Swat and, to a less extent,in isolated adipocytes. Positive correlations were obtained between PPARgamma mRNA and Swat weights and between PPARgamma and RXRalpha mRNA. By contrast, RARgamma mRNA and Swat masses were negatively correlated. The adipocyte precursors from Caf + Swat proliferated more,in vitro, at the beginning of the culture. This difference progressively disappeared and was totally absent after 8 d of culture, but with a higher percentage of differentiated preadipocytes (+80.3 %) in the Caf + group. In conclusion, lipids and vitamin A act synergistically on the normal growth of the adipose tissue in young rats, concomitant with an imbalance in the pattern of the nuclear receptors. These changes influence the early normal development of the endogenous adipocyte precursors.


Assuntos
Adipogenia/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Gordura Subcutânea/metabolismo , Vitamina A/farmacologia , Adipócitos/metabolismo , Animais , Células Cultivadas , Gorduras na Dieta/administração & dosagem , Expressão Gênica , Masculino , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Tempo , Receptor gama de Ácido Retinoico
8.
Med Sci (Paris) ; 20(4): 458-63, 2004 Apr.
Artigo em Francês | MEDLINE | ID: mdl-15124120

RESUMO

Oxidation control is necessary to manage the evolution of complex biological system, particularly in food whose degradation could have consequences on food security. After description of context and oxidation mechanisms, several analytical methods to evaluate the additive antioxidant potential are presented. This evaluation is performed either by quantification of products (in particular hydroperoxydes) using direct or indirect photometric techniques and chemical titration with suitable reactants or on the effectiveness to trap free radicals with modelized systems that can generate them. Methods based on the comparison of radical trapping ability between an additive and Trolox (particularly Trolox(R) equivalent antioxydant capacity, TEAC) can be applied to many products whatever the hydrophily or the hydrophobia of the medium.


Assuntos
Antioxidantes/análise , Análise de Alimentos/métodos , Cromanos/química , Aditivos Alimentares/farmacologia , Aditivos Alimentares/efeitos da radiação , Conservação de Alimentos , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/farmacologia , Radicais Livres , Peróxido de Hidrogênio/análise , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Oxirredução , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...