Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 25(2): 496-513, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27914948

RESUMO

Triazolopyridine ethers with mGlu2 positive allosteric modulator (PAM) activity are disclosed. The synthesis, in vitro activity, and metabolic stability data for a series of analogs is provided. The effort resulted in the discovery of a potent, selective, and brain penetrant lead molecule BMT-133218 ((+)-7m). After oral administration at 10mg/kg, BMT-133218 demonstrated full reversal of PCP-stimulated locomotor activity and prevented MK-801-induced working memory deficits in separate mouse models. Also, reversal of impairments in executive function were observed in rat set-shifting studies at 3 and 10mg/kg (p.o.). Extensive plasma protein binding as the result of high lipophilicity likely limited activity at lower doses. Optimized triazolopyridine ethers offer utility as mGlu2 PAMs for the treatment of schizophrenia and merit further preclinical investigation.


Assuntos
Éteres/farmacologia , Piridinas/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Esquizofrenia/tratamento farmacológico , Triazóis/farmacologia , Administração Oral , Regulação Alostérica/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Éteres/administração & dosagem , Éteres/química , Haplorrinos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Piridinas/administração & dosagem , Piridinas/química , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/metabolismo , Relação Estrutura-Atividade , Triazóis/administração & dosagem , Triazóis/química
2.
J Med Chem ; 59(24): 11171-11181, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27958732

RESUMO

The design and synthesis of a series of quinuclidine-containing spirooxazolidines ("spiroimidates") and their utility as α7 nicotinic acetylcholine receptor partial agonists are described. Selected members of the series demonstrated excellent selectivity for α7 over the highly homologous 5-HT3A receptor. Modification of the N-spiroimidate heterocycle substituent led to (1S,2R,4S)-N-isoquinolin-3-yl)-4'H-4-azaspiro[bicyclo[2.2.2]octane-2,5'oxazol]-2'-amine (BMS-902483), a potent α7 partial agonist, which improved cognition in preclinical rodent models.


Assuntos
Ciclo-Octanos/farmacologia , Desenho de Fármacos , Agonistas Nicotínicos/farmacologia , Compostos de Espiro/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Animais , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Relação Dose-Resposta a Droga , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Estrutura Molecular , Agonistas Nicotínicos/síntese química , Agonistas Nicotínicos/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
3.
J Pharmacol Exp Ther ; 356(2): 293-304, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582730

RESUMO

The muscarinic acetylcholine receptor subtype 1 (M1) receptors play an important role in cognition and memory, and are considered to be attractive targets for the development of novel medications to treat cognitive impairments seen in schizophrenia and Alzheimer's disease. Indeed, the M1 agonist xanomeline has been shown to produce beneficial cognitive effects in both Alzheimer's disease and schizophrenia patients. Unfortunately, the therapeutic utility of xanomeline was limited by cholinergic side effects (sweating, salivation, gastrointestinal distress), which are believed to result from nonselective activation of other muscarinic receptor subtypes such as M2 and M3. Therefore, drug discovery efforts targeting the M1 receptor have focused on the discovery of compounds with improved selectivity profiles. Recently, allosteric M1 receptor ligands have been described, which exhibit excellent selectivity for M1 over other muscarinic receptor subtypes. In the current study, the following three compounds with mixed agonist/positive allosteric modulator activities that are highly functionally selective for the M1 receptor were tested in rats, dogs, and cynomologous monkeys: (3-((1S,2S)-2-hydrocyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one; 1-((4-cyano-4-(pyridin-2-yl)piperidin-1-yl)methyl)-4-oxo-4H-quinolizine-3-carboxylic acid; and (R)-ethyl 3-(2-methylbenzamido)-[1,4'-bipiperidine]-1'-carboxylate). Despite their selectivity for the M1 receptor, all three compounds elicited cholinergic side effects such as salivation, diarrhea, and emesis. These effects could not be explained by activity at other muscarinic receptor subtypes, or by activity at other receptors tested. Together, these results suggest that activation of M1 receptors alone is sufficient to produce unwanted cholinergic side effects such as those seen with xanomeline. This has important implications for the development of M1 receptor-targeted therapeutics since it suggests that dose-limiting cholinergic side effects still reside in M1 receptor selective activators.


Assuntos
Agonistas Muscarínicos/metabolismo , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cães , Relação Dose-Resposta a Droga , Humanos , Macaca fascicularis , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
4.
J Pharmacol Exp Ther ; 354(3): 340-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109678

RESUMO

The present studies represent the first published report of a dopamine D1 positive allosteric modulator (PAM). D1 receptors have been proposed as a therapeutic target for the treatment of cognitive deficits associated with schizophrenia. However, the clinical utility of orthosteric agonist compounds is limited by cardiovascular side effects, poor pharmacokinetics, lack of D1 selectivity, and an inverted dose response. A number of these challenges may be overcome by utilization of a selective D1 PAM. The current studies describe two chemically distinct D1 PAMs: Compound A [1-((rel-1S,3R,6R)-6-(benzo[d][1,3]dioxol-5-yl)bicyclo[4.1.0]heptan-3-yl)-4-(2-bromo-5-chlorobenzyl)piperazine] and Compound B [rel-(9R,10R,12S)-N-(2,6-dichloro-3-methylphenyl)-12-methyl-9,10-dihydro-9,10-ethanoanthracene-12-carboxamide]. Compound A shows pure PAM activity, with an EC50 of 230 nM and agonist activity at the D2 receptor in D2-expressing human embryonic kidney cells. Compound B shows superior potency (EC50 of 43 nM) and selectivity for D1 versus D2 dopamine receptors. Unlike Compound A, Compound B is selective for human and nonhuman primate D1 receptors, but lacks activity at the rodent (rat and mouse) D1 receptors. Using molecular biology techniques, a single amino acid was identified at position 130, which mediates the species selectivity of Compound B. These data represent the first described D1-selective PAMs and define critical amino acids that regulate species selectivity.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Animais , Células CHO , Linhagem Celular , Células Cultivadas , Cricetulus , Células HEK293 , Humanos , Camundongos , Ratos , Esquizofrenia/tratamento farmacológico
7.
Bioorg Med Chem Lett ; 23(6): 1684-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23414838

RESUMO

High throughput screening led to the identification of a novel series of quinolone α7 nicotinic acetylcholine receptor (nAChR) agonists. Optimization of an HTS hit (1) led to 4-phenyl-1-(quinuclidin-3-ylmethyl)quinolin-2(1H)-one, which was found to be potent and selective. Poor brain penetrance in this series was attributed to transporter-mediated efflux, which was in turn due to high pKa. A novel 4-fluoroquinuclidine significantly lowered the pKa of the quinuclidine moiety, reducing efflux as measured by a Caco-2 assay.


Assuntos
Agonistas Nicotínicos/química , Quinolonas/química , Receptores Nicotínicos/química , Animais , Células CACO-2 , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Agonistas Nicotínicos/síntese química , Agonistas Nicotínicos/metabolismo , Quinolonas/síntese química , Quinolonas/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade , Receptor Nicotínico de Acetilcolina alfa7
8.
J Lab Autom ; 17(2): 104-15, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22357567

RESUMO

Prosecution of positive allosteric modulator (PAM) targets demands a specialized assay toolset. Many GPCR or ion channel targets are adaptable to functional assays whereby PAM efficacy can be inferred from left or rightward shifts in the concentration-response curves of orthosteric agonist. The inherent emphasis on throughput and occasional paucity of radioligands for a diverse array of allosteric modulator targets yields a need for an enhanced throughput agonist potency shift assay. Here, we describe a process by which such an assay was automated with robust, reproducible in vitro pharmacology. In direct comparison with a manual CRC shift assay, the enhanced throughput automated platform described here delivered near identical rank orders (r(2) = 0.75) at ~4-fold throughput/assay iteration. Correspondingly, average cycle time/plate decreased from 104 to 72 minutes. We also observed reductions in assay interference associated with compounds exhibiting ago-allosterism, which we attribute to preread compound incubation periods which are more precisely time-constrained under automation control. By leveraging automated laboratory technology, we have achieved meaningful throughput with no sacrifice of precision. Rather than to be target-class specific, the present process was specifically designed to serve as a platform template for a variety of cell-based functional allosteric modulation assays.


Assuntos
Automação Laboratorial/métodos , Técnicas Citológicas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Canais Iônicos/agonistas , Tecnologia Farmacêutica/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos
9.
Assay Drug Dev Technol ; 10(2): 202-11, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22085018

RESUMO

Low-volume dispensing of neat dimethyl sulfoxide (DMSO) into plate-based assays conserves compound, assay reagents, and intermediate dilution plate cost and, as we demonstrate here, significantly improves structure-activity relationship resolution. Acoustic dispensing of DMSO solutions into standard volume 384W plates yielded inconsistent results in studies with 2 cell lines because of apparent effects on the integrity of the cell monolayer (increased intracellular Ca⁺⁺ levels as indicated by elevated basal dye fluorescence after acoustic transfer). PocketTip-mediated transfer was successful at increasing apparent potency on a more consistent basis. Notably, the correlation coefficient among fluorescence imaging plate reader (FLIPR):electrophysiology (EP) across a representative ~125 compound collection was increased ~5× via conversion to a PocketTip direct dispensation, indicating a triage assay more predictive of activity in the decisional patch-clamp assay. Very importantly, the EP-benchmarked false-negative rate as measured by compounds with FLIPR EC50 more than the highest concentration tested fell from >11% to 5% assay-wide, and the relative FLIPR:EP rank-order fidelity increased from 55% to 78%. Elimination of the aqueous intermediate step provided additional benefits, including reduced assay cost, decreased cycle time, and reduced wet compound consumption rate. Direct DMSO dispensing has broad applicability to cell-based functional assays of multiple varieties, especially in cases where limit solubility in assay buffer is a recognized impediment to maximizing interassay connectivity.


Assuntos
Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Canais Iônicos/efeitos dos fármacos , Acústica , Soluções Tampão , Cálcio/análise , Cálcio/química , Centrifugação , Dimetil Sulfóxido/química , Reações Falso-Negativas , Fluorometria , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Técnicas de Diluição do Indicador , Técnicas de Patch-Clamp , Solubilidade , Soluções , Água
10.
J Biomol Screen ; 14(5): 476-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19483144

RESUMO

Preserving the integrity of the compound collection and providing high-quality materials for drug discovery in an efficient and cost-effective manner are 2 major challenges faced by compound management (CM) at Bristol-Myers Squibb (BMS). The demands on CM include delivering hundreds of thousands of compounds a year to a variety of operations. These operations range from single-compound requests to hit identification support and just-in-time assay plate provision for lead optimization. Support needs for these processes consist of the ability to rapidly provide compounds as solids or solutions in a variety of formats, establishing proper long- and short-term storage conditions and creating appropriate methods for handling concentrated, potent compounds for delivery to sensitive biological assays. A series of experiments evaluating the effects of processing compounds with volatile solvents, storage conditions that can induce freeze/thaw cycles, and the delivery of compounds were performed. This article presents the results of these experiments and how they affect compound integrity and the accuracy of compound management processes.


Assuntos
Bioensaio , Descoberta de Drogas , Estabilidade de Medicamentos , Bioensaio/instrumentação , Bioensaio/métodos , Bioensaio/normas , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Preparações Farmacêuticas/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...