Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 193(1): 33-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32808248

RESUMO

Fungal enzymes are widely used in technological processes and have some interesting features to be applied in a variety of biosynthetic courses. Here, free and substrate-immobilised lipases from Fusarium verticillioides P24 were obtained by solid-state fermentation using wheat bran as substrate and fungal carrier. Based on their hydrolytic and transesterification activities, the lipases were characterised as pH-dependent in both reactions, with higher substrate conversion in an alkaline environment. Thermally, the lipases performed well from 30 to 45 °C, being more stable in mild conditions. Organic solvents significantly influenced the lipase selectivity using different vegetable oils as fatty acid source. Omega(ω)-3 production in n-hexane achieved 45% using canola oil, against ≈ 18% in cyclohexane. However, ω-6 production was preferably produced for both solvents using linseed oil with significant alterations in the yield (≈ 79% and 49% for n-hexane and cyclohexane, respectively). Moreover, the greatest enzyme selectivity for ω-6 led us to suppose a lipase preference for the Sn1 position of the triacylglycerol. Lastly, a transesterification reaction was performed, achieving 90% of ester conversion in 72 h. This study reports the characterisation and use of free and substrate-immobilised lipases from Fusarium verticillioides P24 as an economic and efficient method for the first time.


Assuntos
Biocatálise , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Fusarium/enzimologia , Lipase/química , Esterificação
2.
Bioprocess Biosyst Eng ; 39(12): 1933-1943, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27503486

RESUMO

It is known that lipases may have their catalytic properties improved by the action of some salts or by the adsorption on hydrophobic supports. However, what we present in this work is more than that: we evaluate the combination of these two factors of hyperactivation of lipases from Acremonium-like ROG 2.1.9, a study that has not been done so far. This work proves that a synergistic effect occurs when the lipases are immobilized on hydrophobic supports at the presence of sodium chloride and are applied in triacylglycerol hydrolysis. This assay made it possible to achieve the highest hyperactivation of 500 % with the lipases immobilized on Phenyl-Sepharose and applied with 0.1 M of sodium chloride. Besides this positive effect on enzyme activity, the use of these two factors led to the thermal stability increasing of the immobilized lipases. For this derivative, the recovered activity was approximately 85 % after 6 h incubated at 55 °C and 1.0 M of the sodium chloride against 50 % of the same derivative without this salt. Furthermore, others assays were performed to prove the evidences about the synergistic effect, showing a promising method to improve the catalytic properties of the lipases from Acremonium-like ROG 2.1.9.


Assuntos
Acremonium/enzimologia , Proteínas Fúngicas/química , Lipase/química , Cloreto de Sódio/química , Triglicerídeos/química , Catálise , Ativação Enzimática , Enzimas Imobilizadas/química
3.
Appl Biochem Biotechnol ; 171(7): 1681-91, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23996123

RESUMO

An extracellular ethanol-tolerant ß-glucosidase from Sporidiobolus pararoseus was purified to homogeneity and characterized, and its potential use for the enhancement of wine aroma was investigated. The crude enzymatic extract was purified in four steps (concentration, dialysis, ultrafiltration, and chromatography) with a yield of around 40 % for total activity. The purified enzyme (designated Sp-ßgl-P) showed a specific activity of approximately 20.0 U/mg, an estimated molecular mass of 63 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis, and isoelectric point of 5.0 by isoelectric focusing. Sp-ßgl-P has optimal activity at pH 4.0 and at 55 °C. It was stable in a broad pH range at low temperatures and it was tolerant to ethanol and glucose, indicating suitable properties for winemaking. The hydrolysis of glycosidic terpenes was analyzed by adding Sp-ßgl-P directly to the wines. The released terpene compounds were evaluated by gas chromatography/mass spectrometry. The enzymatic treatment significantly increased the amount of free terpenes, suggesting that this enzyme could potentially be applicable in wine aroma improvement.


Assuntos
Basidiomycota/enzimologia , Etanol/farmacologia , Odorantes , Vinho , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Metais/farmacologia , Especificidade por Substrato , Temperatura , Terpenos/análise , Terpenos/química , beta-Glucosidase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...