Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009444

RESUMO

Titanium dental implants have common clinical applications due to their biocompatibility, biophysical and biochemical characteristics. Although current titanium is thought to be safe and beneficial for patients, there are several indications that it may release toxic metal ions or metal nanoparticles from its alloys into the surrounding environment, which could lead to clinically relevant complications including toxic reactions as well as immune dysfunctions. Hence, an adequate selection and testing of medical biomaterial with outstanding properties are warranted. This study was designed to explore the biocompatibility of smooth titanium-niobium alloy (S_TiNb) versus smooth titanium commercially pure (S_TiCp)-a reference in implantology. All experiments were performed in vitro using human osteoblast-like SaOs-2 and monocyte THP-1 cell lines as models. Cell adhesion and growth morphology were determined by scanning electron microscopy, while cell viability was evaluated using WST-1 assay. Because niobate anions or niobium nanoparticles can be released from implants during biomaterial-cell interaction, potential immunotoxicity of potassium niobate (KNbO3) salt was evaluated by examining both metabolic activity and transcriptomic profiling of treated THP-1 monocytes. The main findings of this study are that S_TiCp and S_TiNb discs do not show an impact on the proliferation and viability of SaOs-2 cells compared to polystyrene surfaces, whereas a significant decrease in THP-1 cells' viability and metabolic activity was observed in the presence of S_TiNb discs compared to the control group. However, no significant changes were found neither at the metabolic activity nor at the transcriptomic level of THP-1 monocytes exposed to KNbO3 salt, suggesting that niobium has no effect on the immune system. Overall, these data imply a possible toxicity of S_TiNb discs toward THP-1 cells, which may not be directly related to niobium but perhaps to the manufacturing process of titanium-niobium alloy. Thus, this limitation must be overcome to make titanium alloy an excellent material for medical applications.

2.
Biomedicines ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625902

RESUMO

Medical imaging has relied on ultrasound (US) as an exploratory method for decades. Nonetheless, in cell biology, the numerous US applications are mainly in the research and development phase. In this review, we report the main effects on human or mammal cells of US induced by bulk or surface acoustic waves (SAW). At low frequencies, bulk US can lead to cell death. Under specific intensities and exposure times, however, cell proliferation and migration can be enhanced through cytoskeleton fluidization (a reorganization of the actin filaments and microtubules). Cavitation phenomena, frequencies of resonance close to those of the biological compounds, and mechanical transfers of energy from the acoustic pressure could explain those biological outcomes. At higher frequencies, no cavitation is observed. However, USs of high frequency stimulate ionic channels and increase cell permeability and transfection potency. Surface acoustic waves are increasingly exploited in microfluidics, especially for precise cell manipulations and cell sorting. With applications in diagnosis, infection, cancer treatment, or wound healing, US has remarkable potential. More mechanotransduction studies would be beneficial to understand the distinct roles of temperature rise, acoustic streaming and mechanical and electrical stimuli in the field.

3.
Nanomaterials (Basel) ; 12(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458071

RESUMO

Nanoparticle toxicity assessments have moved closer to physiological conditions while trying to avoid the use of animal models. An example of new in vitro exposure techniques developed is the exposure of cultured cells at the air-liquid interface (ALI), particularly in the case of respiratory airways. While the commercially available VITROCELL® Cloud System has been applied for the delivery of aerosolized substances to adherent cells under ALI conditions, it has not yet been tested on lung surfactant and semi-adherent cells such as alveolar macrophages, which are playing a pivotal role in the nanoparticle-induced immune response. OBJECTIVES: In this work, we developed a comprehensive methodology for coating semi-adherent lung cells cultured at the ALI with aerosolized surfactant and subsequent dose-controlled exposure to nanoparticles (NPs). This protocol is optimized for subsequent transcriptomic studies. METHODS: Semi-adherent rat alveolar macrophages NR8383 were grown at the ALI and coated with lung surfactant through nebulization using the VITROCELL® Cloud 6 System before being exposed to TiO2 NM105 NPs. After NP exposures, RNA was extracted and its quantity and quality were measured. RESULTS: The VITROCELL® Cloud system allowed for uniform and ultrathin coating of cells with aerosolized surfactant mimicking physiological conditions in the lung. While nebulization of 57 µL of 30 mg/mL TiO2 and 114 µL of 15 mg/mL TiO2 nanoparticles yielded identical cell delivered dose, the reproducibility of dose as well as the quality of RNA extracted were better for 114 µL.

4.
Subst Abus ; 42(4): 706-715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33320801

RESUMO

Background: Community pharmacists are among the frontline health professionals who manage patients with an opioid-related disorder (ORD). Pharmacists frequently have a negative attitude toward these patients, which could have a negative impact on their management. However, education on ORD may improve the attitude of future healthcare professionals. This cross-sectional study aimed to assess French pharmacy students' perceptions of ORD. Methods: This online survey was performed by emails sent to French pharmacy schools (between January 14, 2019 and May 31, 2019). The primary outcome was the perception (visual analogic scale) of ORD as a disease, the roles of community pharmacies (delivery of opioid agonist therapy-OAT and harm reduction kits), and the efficacy of OAT. The secondary outcomes assessed professional experience, university experience of and education on ORD, and the individual characteristics of students. Results: Among the 1,994 students included, 76.3% perceived ORD as a disease and felt that it was normal for pharmacists to deliver OAT (78.9%) and harm reduction kits (74.6%). However, only 46.9% perceived OAT as being effective. Multivariable analyses showed that females had a more positive perception in recognizing ORD as a disease. The progression through university years increased the positive perception of ORD as a disease and the delivery of OAT and harm reduction kits by pharmacists. Education on substance-related disorders had no impact on any scores. Students who had already delivered OAT had a negative perception of their efficacy. The students who had already performed pharmacy jobs or traineeships had a negative perception of harm reduction kit delivery. Conclusion: Education on substance-related disorders had no impact on students' perceptions. It seemed that the maturity acquired through university years had a stronger impact on the students' perceptions of ORD. Efforts must be made to improve our teaching methods and reinforce the confidence of students in the roles of community pharmacists.


Assuntos
Educação em Farmácia , Transtornos Relacionados ao Uso de Opioides , Estudantes de Farmácia , Estudos Transversais , Educação em Farmácia/métodos , Feminino , Humanos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Percepção , Farmacêuticos , Inquéritos e Questionários
5.
Cell Mol Biol (Noisy-le-grand) ; 66(6): 112-116, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33040795

RESUMO

nvestigations on adverse biological effects of nanoparticles (NP) are performed usually either in vivo on rodents or in vitro under submerged conditions where NP are in suspension into cell culture media. However, sedimentation of NP in vitro is a continuous process and to assess the exact deposited cellular dose remains difficult, as the cellular internal dose is a function of time. Moreover, the cellular responses to NP under submerged culture conditions or by exposing rodents by nose-only to NP aerosols might differ from those observed at physiological settings at the air-liquid interface (ALI). Rat alveolar NR8383 macrophages were exposed to aerosols at the air-liquid interface. We studied TiO2 NM105, a mixture of anatase and rutile. NR8383 cells were exposed to a single dose of 3.0 cm2/cm2 of TiO2 aerosol. Following RNA extraction, transcriptome allowing full coverage of the rat genome was performed, and differentially expressed genes were retrieved. Their products were analyzed for functions and interaction with String DB. Only 126 genes were differentially expressed and 98 were recognized by String DB and give us the gene expression signature of exposed rat alveolar NR8383 macrophages. Among them, 13 display relationships at a high confidence level and the ten most differentially expressed compared to unexposed cells were: Chac1, Ccl4, Zfp668, Fam129b, Nab2, Txnip, Id1, Cdc42ep3, Dusp6 and Myc, ranked from the most overexpressed to the most under-expressed. Some of them were previously described as over or under-expressed in NP exposed cell systems. We validated in our laboratory an easy-to-use device and a physiological relevant paradigm for studying the effects of cell exposure to TiO2. Ccl4 gene expression seems to be a positive marker of exposure evidenced as well as in vivo or in both in vitro conditions.


Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Aerossóis/toxicidade , Animais , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Ratos , Suspensões/toxicidade , Transcriptoma/efeitos dos fármacos
6.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659965

RESUMO

There are many studies concerning titanium dioxide (TiO2) nanoparticles (NP) toxicity. Nevertheless, there are few publications comparing in vitro and in vivo exposure, and even less comparing air-liquid interface exposure (ALI) with other in vitro and in vivo exposures. The identification and validation of common markers under different exposure conditions are relevant for the development of smart and quick nanotoxicity tests. In this work, cell viability was assessed in vitro by WST-1 and LDH assays after the exposure of NR8383 cells to TiO2 NP sample. To evaluate in vitro gene expression profile, NR8383 cells were exposed to TiO2 NP during 4 h at 3 cm2 of TiO2 NP/cm2 of cells or 19 µg/mL, in two settings-submerged cultures and ALI. For the in vivo study, Fischer 344 rats were exposed by inhalation to a nanostructured aerosol at a concentration of 10 mg/m3, 6 h/day, 5 days/week for 4 weeks. This was followed immediately by gene expression analysis. The results showed a low cytotoxic potential of TiO2 NP on NR8383 cells. Despite the absence of toxicity at the doses studied, the different exposures to TiO2 NP induce 18 common differentially expressed genes (DEG) which are involved in mitosis regulation, cell proliferation and apoptosis and inflammation transport of membrane proteins. Among these genes, we noticed the upregulation of Ccl4, Osm, Ccl7 and Bcl3 genes which could be suggested as early response biomarkers after exposure to TiO2 NP. On the other hand, the comparison of the three models helped us to validate the alternative ones, namely submerged and ALI approaches.


Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Administração por Inalação , Aerossóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inflamação , Masculino , Proteínas de Membrana/metabolismo , Mitose/efeitos dos fármacos , Nanoestruturas/toxicidade , Ratos , Ratos Endogâmicos F344 , Transcriptoma/efeitos dos fármacos
7.
ACS Omega ; 5(10): 4770-4777, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201762

RESUMO

Designing and manufacturing multifunctional nanoparticles (NPs) are of considerable interest for both academic and industrial research. Among NPs used in this field, iron oxide NPs show low toxicity compared to metallic ones and are thus of high interest for biomedical applications. In this work, superparamagnetic Fe3-δO4-based core/shell NPs were successfully prepared and characterized by the combination of different techniques, and their physical properties were investigated. We demonstrate the efficiency of the layer-by-layer process to graft polyelectrolytes on the surface of iron oxide NPs. The influence of the polyelectrolyte chain configuration on the magnetic properties of the Fe3-δO4/polymer core/shell NPs was enlightened. The simple and fast process described in this work is efficient for the grafting of polyelectrolytes from surfaces, and thus, derived Fe3-δO4 NPs display both the physical properties of the core and of the macromolecular shell. Finally, the cytotoxicity toward the human THP-1 monocytic cell line of the core/shell NPs was assessed. The results showed that the polymer-capped Fe3-δO4 NPs exhibited almost no toxicity after 24 h of exposure at concentrations up to 25 µg mL-1. Our results show that these smart superparamagnetic nanocarriers with stealth properties are promising for applications in multimodal cancer therapy, including drug delivery.

8.
J Nanobiotechnology ; 18(1): 36, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093716

RESUMO

Functionalized multi-walled carbon nanotubes (MWCNT) have become the focus of increased research interest, particularly in their application as tools in different areas, such as the biomedical field. Despite the benefits associated with functionalization of MWCNT, particularly in overcoming issues relating to solubility, several studies have demonstrated that these functionalized nanoparticles display different toxicity profiles. For this study, we aim to compare NR8383 cells responses to three well-characterized MWCNT with varying functional groups. This study employed cytotoxicity assays, transcriptomics and proteomics to assess their toxicity using NR8383 rat alveolar macrophages as an in vitro model. The study findings indicated that all MWCNT altered ribosomal protein translation, cytoskeleton arrangement and induced pro-inflammatory response. Only functionalized MWCNT alter mTOR signaling pathway in conjunction with increased Lamtor gene expression. Furthermore, the type of functionalization was also important, with cationic MWCNT activating the transcription factor EB and inducing autophagy while the anionic MWCNT altering eukaryotic translation initiation factor 4 (EIF4) and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) signaling pathway as well as upregulation Tlr2 gene expression. This study proposes that MWCNT toxicity mechanisms are functionalization dependent and provides evidence that inflammatory response is a key event of carbon nanotubes toxicity.


Assuntos
Perfilação da Expressão Gênica , Macrófagos Alveolares/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Autofagia , Cátions , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Expressão Gênica , L-Lactato Desidrogenase/metabolismo , Macrófagos Alveolares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Proteômica , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Cell Biol Toxicol ; 36(1): 65-82, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31352547

RESUMO

Metal oxide nanoparticles (NPs), such as ZnO, ZnFe2O4, and Fe2O3, are widely used in industry. However, little is known about the cellular pathways involved in their potential toxicity. Here, we particularly investigated the key molecular pathways that are switched on after exposure to sub-toxic doses of ZnO, ZnFe2O4, and Fe2O3 in the in vitro rat alveolar macrophages (NR8383). As in our model, the calculated IC50 were respectively 16, 68, and more than 200 µg/mL for ZnO, ZnFe2O4, and Fe2O3; global gene and protein expression profiles were only analyzed after exposure to ZnO and ZnFe2O4 NPs. Using a rat genome microarray technology, we found that 985 and 1209 genes were significantly differentially expressed in NR8383 upon 4 h exposure to » IC50 of ZnO and ZnFe2O4 NPs, respectively. It is noteworthy that metallothioneins were overexpressed genes following exposure to both NPs. Moreover, Ingenuity Pathway Analysis revealed that the top canonical pathway disturbed in NR8383 exposed to ZnO and ZnFe2O4 NPs was eIF2 signaling involved in protein homeostasis. Quantitative mass spectrometry approach performed from both NR8383 cell extracts and culture supernatant indicated that 348 and 795 proteins were differentially expressed upon 24 h exposure to » IC50 of ZnO and ZnFe2O4 NPs, respectively. Bioinformatics analysis revealed that the top canonical pathways disturbed in NR8383 were involved in protein homeostasis and cholesterol biosynthesis for both exposure conditions. While VEGF signaling was specific to ZnO exposure, iron homeostasis signaling pathway was specific to ZnFe2O4 NPs. Overall, the study provides resource of transcriptional and proteomic markers of response to ZnO and ZnFe2O4 NP-induced toxicity through combined transcriptomics, proteomics, and bioinformatics approaches.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Animais , Linhagem Celular , Biologia Computacional/métodos , Homeostase , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas/química , Nanopartículas/toxicidade , Proteômica/métodos , Ratos , Transdução de Sinais , Óxido de Zinco/química , Óxido de Zinco/toxicidade
10.
Cell Biol Toxicol ; 36(4): 387, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31884677

RESUMO

Unfortunately, the author names in the author group section were incorrectly captured in the published online paper.

11.
J Appl Toxicol ; 39(5): 764-772, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30605223

RESUMO

Human exposure to airborne carbon nanotubes (CNT) is increasing because of their applications in different sectors; therefore, they constitute a biological hazard. Consequently, developing studies on CNT toxicity become a necessity. CNTs can have different properties in term of length, size and charge. Here, we compared the cellular effect of multiwall (MWCNTs) and single wall CNTs (SWCNTs). MWCNTs consist of multiple layers of graphene, while SWCNTs are monolayers. The effects of MWCNTs and SWCNTs were evaluated by the water-soluble tetrazolium salt cell proliferation assay on NR8383 cells, rat alveolar macrophage cell line (NR8383). After 24 hours of exposure, MWCNTs showed higher toxicity (50% inhibitory concentration [IC50 ] = 3.2 cm2 /cm2 ) than SWCNTs (IC50  = 44 cm2 /cm2 ). Only SWCNTs have induced NR8383 cells apoptosis as assayed by flow cytometry using the annexin V/IP staining test. The expression of genes involved in oxidative burst (Ncf1), inflammation (Nfκb, Tnf-α, Il-6 and Il-1ß), mitochondrial damage (Opa) and apoptotic balance (Pdcd4, Bcl-2 and Casp-8) was determined. We found that MWCNT exposure predominantly induce inflammation, while SWCNTs induce apoptosis and impaired mitochondrial function. Our results clearly suggest that MWCNTs are ideal candidates for acute inflammation induction. In vivo studies are required to confirm this hypothesis. However, we conclude that toxicity of CNTs is dependent on their physical and chemical characteristics.


Assuntos
Poluentes Atmosféricos/toxicidade , Macrófagos Alveolares/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Poluentes Atmosféricos/química , Animais , Linhagem Celular , Nanotubos de Carbono/química , Tamanho da Partícula , Ratos , Propriedades de Superfície
12.
Drug Dev Ind Pharm ; 45(3): 423-429, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30449192

RESUMO

OBJECTIVE: S-nitrosogluthatione (GSNO), a S-nitrosothiol, is a commonly used as nitric oxide (NO•) donor. However, its half-life is too short for a direct therapeutic use. To protect and ensure a sustained release of NO•, the encapsulation of GSNO into nanoparticles may be an interesting option. METHODS: In this work, we have investigated the early (4 h) and late (24 h) transcriptomic response of THP-1 human monocytes cells to two doses (1.4 and 6 µM) of either free or Eudragit® nano-encapsulated GSNO using RNA microarray. RESULTS: After exposure to free GSNO, genes mainly involved in apoptosis, cell differentiation, immune response and metabolic processes were differentially expressed. Although, cells exposed to free or encapsulated GSNO behave differently, activation of genes involved in blood coagulation, immune response and cell cycle was observed in both conditions. CONCLUSIONS: These results suggest that the encapsulation of low doses of GSNO into Eudragit® nanoparticles leads to a progressive release of GSNO making this compound a possible oral therapy for several biomedical applications like inflammatory bowel diseases.


Assuntos
S-Nitrosoglutationa/farmacocinética , Transcriptoma/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Meia-Vida , Humanos , Imunidade/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nanopartículas/metabolismo , Óxido Nítrico/metabolismo , Ácidos Polimetacrílicos/química , Células THP-1
13.
Toxicol Lett ; 308: 65-73, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30423365

RESUMO

Despite a wide production and use of zinc oxide nanoparticles (ZnONP), their toxicological study is only of limited number and their impact at a molecular level is seldom addressed. Thus, we have used, as a model, zinc oxide nanoparticle NM110 (ZnO110NP) exposure to PMA-differentiated THP-1 macrophages. The cell viability was studied at the cellular level using WST-1, LDH and Alamar Blue® assays, as well as at the molecular level by transcriptomic analysis. Exposure of cells to ZnO110NP for 24 h decreased their viability in a dose-dependent manner with mean inhibitory concentrations (IC50) of 8.1 µg/mL. Transcriptomic study of cells exposed to two concentrations of ZnO110NP: IC50 and a quarter of it (IC50/4) for 4 h showed that the expressions of genes involved in metal metabolism are perturbed. In addition, expression of genes acting in transcription regulation and DNA binding, as well as clusters of genes related to protein synthesis and structure were altered. It has to be noted that the expressions of metallothioneins genes (MT1, MT2) and genes of heat-shock proteins genes (HSP) were strongly upregulated for both conditions. These genes might be used as an early marker of exposure to ZnONP. On the contrary, at IC50 exposure, modifications of gene expression involved in inflammation, apoptosis and mitochondrial suffering were noted indicating a less specific cellular response. Overall, this study brings a resource of transcriptional data for ZnONP toxicity for further mechanistic studies.


Assuntos
Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Nanopartículas/toxicidade , Transcriptoma/efeitos dos fármacos , Óxido de Zinco/toxicidade , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Humanos , Macrófagos/patologia , Monócitos/patologia , Nanopartículas/química , Tamanho da Partícula , Regulação para Cima , Óxido de Zinco/química
14.
Materials (Basel) ; 7(3): 1555-1572, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788531

RESUMO

The aim of this study was to prepare Eudragit Retard L (Eudragit RL) nanoparticles (ENPs) and to determine their properties, their uptake by the human THP-1 cell line in vitro and their effect on the hematological parameters and erythrocyte damage in rats. ENPs showed an average size of 329.0 ± 18.5 nm, a positive zeta potential value of +57.5 ± 5.47 mV and nearly spherical shape with a smooth surface. THP-1 cell lines could phagocyte ENPs after 2 h of incubation. In the in vivo study, male Sprague-Dawley rats were exposed orally or intraperitoneally (IP) with a single dose of ENP (50 mg/kg body weight). Blood samples were collected after 4 h, 48 h, one week and three weeks for hematological and erythrocytes analysis. ENPs induced significant hematological disturbances in platelets, red blood cell (RBC) total and differential counts of white blood cells (WBCs) after 4 h, 48 h and one week. ENP increased met-Hb and Co-Hb derivatives and decreased met-Hb reductase activity. These parameters were comparable to the control after three weeks when administrated orally. It could be concluded that the route of administration has a major effect on the induction of hematological disturbances and should be considered when ENPs are applied for drug delivery systems.

15.
Physiol Rep ; 1(4): e00027, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24303146

RESUMO

Due to their unique properties, engineered nanoparticles (NPs) have found broad use in industry, technology, and medicine, including as a vehicle for drug delivery. However, the understanding of NPs' interaction with different types of mammalian cells lags significantly behind their increasing adoption in drug delivery. In this study, we show unique responses of human epithelial breast cells when exposed to polymeric Eudragit® RS NPs (ENPs) for 1-3 days. Cells displayed dose-dependent increases in metabolic activity and growth, but lower proliferation rates, than control cells, as evidenced in tetrazolium salt (WST-1) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Those effects did not affect cell death or mitochondrial fragmentation. We attribute the increase in metabolic activity and growth of cells culture with ENPs to three factors: (1) high affinity of proteins present in the serum for ENPs, (2) adhesion of ENPs to cells, and (3) activation of proliferation and growth pathways. The proteins and genes responsible for stimulating cell adhesion and growth were identified by mass spectrometry and Microarray analyses. We demonstrate a novel property of ENPs, which act to increase cell metabolic activity and growth and organize epithelial cells in the epithelium as determined by Microarray analysis.

16.
Environ Health ; 10: 23, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21435260

RESUMO

BACKGROUND: Sewage workers are exposed to multiple chemicals among which many are suspected genotoxicants. Therefore, they might incur DNA damage and oxidative stress. We aimed to explore integrated urinary biomarkers, assessing the overall urine genotoxicity by in vitro comet and micronucleus assays and measuring urinary 8-oxo-2'-deoxyguanosine. METHODS: During three consecutive working days, polycyclic aromatic hydrocarbons and volatile organic compounds were sampled in workplace air of 34 sewage and 30 office workers, as indicators of airborne exposure. The last day, subjects collected their 24 hours urine. Genotoxicity of urinary extracts was assessed by comet and micronucleus assays on a HepG2 cell line. Using competitive enzymatic immunoassay we evaluated the 24 hours urinary 8-oxo-2'-deoxyguanosine excretion. Benzo(a)pyrene toxicity equivalent factors and inhalation unit risk for Benzo(a)pyrene and benzene were used to give an estimate of cancer risk levels. RESULTS: Workplace air concentrations of polycyclic aromatic hydrocarbons (e.g. 23.7 [range 2.4-104.6] ng.m-3 for fluoranthene) and volatile organic compounds (e.g. 19.1 ± 2.9 [standard error] µ.m-3 for benzene) were elevated in sewage compared to office workplaces (P < 0.01) and corresponded to an increased lifetime cancer risk. The urinary extracts of sewage workers showed higher genotoxicity (P < 0.001) than office workers. CONCLUSIONS: The integrated and non-specific urinary biomarkers of exposure showed that sewage workers experience exposure to mixtures of genotoxicants in the workplace.


Assuntos
Mutagênicos/toxicidade , Exposição Ocupacional , Engenharia Sanitária , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Poluição do Ar em Ambientes Fechados , Benzeno/análise , Benzo(a)pireno/análise , Biomarcadores Tumorais/metabolismo , Ensaio Cometa , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Monitoramento Ambiental/métodos , Células Hep G2 , Humanos , Exposição por Inalação , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Estresse Oxidativo , Paris , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos Voláteis/análise , Adulto Jovem
17.
Toxicol Sci ; 111(2): 362-71, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19635754

RESUMO

Toluene is a high-production industrial solvent, which can disrupt the auditory system in rats. However, toluene-induced hearing loss is species dependent. For instance, despite long-lasting exposures to high concentrations of aromatic solvent, no study has yet succeeded in causing convincing hearing loss in the guinea pig. This latter species can be characterized by two metabolic particularities: a high amount of hepatic cytochrome P-450s (P-450s) and a high concentration of glutathione in the cochlea. It is therefore likely that the efficiency of both the hepatic and cochlear metabolisms plays a key role in the innocuousness of the hearing of guinea pigs to exposure to solvent. The present study was carried out to test the auditory resistance to toluene in glutathione-depleted guinea pigs whose the P-450 activity was partly inhibited. To this end, animals on a low-protein diet received a general P-450 inhibitor, namely SKF525-A. Meanwhile, they were exposed to 1750 ppm toluene for 4 weeks, 5 days/week, 6 h/day. Auditory function was tested by electrocochleography and completed by histological analyses. For the first time, a significant toluene-induced hearing loss was provoked in the P-450-inhibited guinea pigs. However, the ototoxic process caused by the solvent exposure was different from that observed in the rat. Only the stria vascularis and the spiral fibers were disrupted in the apical coil of the cochlea. The protective mechanisms developed by guinea pigs are discussed in the present publication.


Assuntos
Perda Auditiva/induzido quimicamente , Tolueno/toxicidade , Animais , Audiometria , Cobaias , Perda Auditiva/fisiopatologia , Masculino , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/patologia , Projetos Piloto , Tolueno/sangue , Tolueno/urina
18.
Neurotoxicol Teratol ; 30(3): 154-60, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18420380

RESUMO

Toluene can be considered an ototoxic chemical compound in the rat. Outer hair cells are particularly sensitive to this aromatic organic solvent or to one of its metabolites. The objective of the present study was to evaluate the possible role played by cysteine S-conjugates in the ototoxic process in Long-Evans rats. To this end, renal and hepatic metabolism of toluene was modified by treatment with acivicin, an inhibitor of gamma-glutamyl transferase (gamma-GT). First, the efficacy of the acivicin treatment was established from a dose-response investigation in which urinary gamma-GT was measured daily in rats exposed to 1750 ppm toluene, 6 h per day for five days. A twice weekly 5 mg/kg dose was reduced urinary gamma-GT by 70-78%. In a subacute experiment, rats were exposed to 1750 ppm toluene for four consecutive weeks, in which the efficacy of the acivicin treatment was monitored by quantifying the urinary end product of the conjugate pathway: benzyl mercapturic acid (BMA). A 38.5% decrease in BMA was measured at the end of the exposure period. Hearing impairment was evaluated using auditory (inferior colliculus) evoked potentials and completed with conventional histological approaches. The toluene-exposed and the acivicin-treated rats exposed to toluene both had a 7-dB permanent auditory threshold shift at 16-20 kHz. Hair cell loss was not dependent on acivicin treatment. Therefore, the partial inhibition of gamma-GT did not modify the toluene ototoxicity, suggesting that toluene-induced hearing loss is not strongly mediated by the production of cysteine S-conjugates. However, the data do not rule out the possibility that these metabolites may play a minor role.


Assuntos
Antimetabólitos/toxicidade , Transtornos da Audição/induzido quimicamente , Isoxazóis/toxicidade , Tolueno/toxicidade , Acetilcisteína/análogos & derivados , Acetilcisteína/urina , Animais , Audiometria , Cisteína/metabolismo , Relação Dose-Resposta a Droga , Potenciais Evocados Auditivos/efeitos dos fármacos , Hipuratos/sangue , Masculino , Ratos , Ratos Long-Evans , Tolueno/sangue , gama-Glutamiltransferase/metabolismo
19.
BMC Cancer ; 8: 67, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18325085

RESUMO

BACKGROUND: Sewage workers provide an essential service in the protection of public and environmental health. However, they are exposed to varied mixtures of chemicals; some are known or suspected to be genotoxics or carcinogens. Thus, trying to relate adverse outcomes to single toxicant is inappropriate. We aim to investigate if sewage workers are at increased carcinogenic risk as evaluated by biomarkers of exposure and early biological effects. METHODS/DESIGN: This cross sectional study will compare exposed sewage workers to non-exposed office workers. Both are voluntaries from Paris municipality, males, aged (20-60) years, non-smokers since at least six months, with no history of chronic or recent illness, and have similar socioeconomic status. After at least 3 days of consecutive work, blood sample and a 24-hour urine will be collected. A caffeine test will be performed, by administering coffee and collecting urines three hours after. Subjects will fill in self-administered questionnaires; one covering the professional and lifestyle habits while the a second one is alimentary. The blood sample will be used to assess DNA adducts in peripheral lymphocytes. The 24-hour urine to assess urinary 8-oxo-7, 8-dihydro-2'-deoxy-Guanosine (8-oxo-dG), and the in vitro genotoxicity tests (comet and micronucleus) using HeLa S3 or HepG2 cells. In parallel, occupational air sampling will be conducted for some Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds. A weekly sampling chronology at the offices of occupational medicine in Paris city during the regular medical visits will be followed. This protocol has been accepted by the French Est III Ethical Comitee with the number 2007-A00685-48. DISCUSSION: Biomarkers of exposure and of early biological effects may help overcome the limitations of environmental exposure assessment in very complex occupational or environmental settings.


Assuntos
Carcinógenos/toxicidade , Exposição Ocupacional , Esgotos , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Biomarcadores Tumorais/metabolismo , Cafeína/farmacologia , Ensaio Cometa , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Monitoramento Ambiental/métodos , Células HeLa , Humanos , Masculino , Testes para Micronúcleos , Pessoa de Meia-Idade , Paris , Urinálise
20.
Basic Clin Pharmacol Toxicol ; 100(6): 392-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17516993

RESUMO

Hyperlipidaemia, i.e. increase in total cholesterol and triglycerides, is a common side-effect of the immunosuppressive drugs rapamycin (RAPA) and cyclosporine A (CsA), and is probably related to inhibition of the 27-hydroxylation of cholesterol (acid pathway of bile acid biosynthesis). This might be one of the causes for the increase in plasma cholesterol, as 27-hydroxycholesterol is a potent suppressor of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), a key enzyme of cholesterol synthesis. As the sterol 27-hydroxylase (CYP27A1) inhibition by CsA is well known, we evaluated the effect of another immunosuppressive drug, RAPA, on this enzyme in HepG2 mitochondria, which confirmed the dose-dependent inhibition of mitochondrial CYP27A1 by cyclosporine (10-20 microM), while the inhibition by RAPA required a higher dose (50-100 microM). Corresponding K(i) was 10 microM for CsA (non-competitive inhibition) and 110 microM for RAPA (competitive inhibition). Cotreatment with both immunosuppressive drugs showed an additive inhibitory effect on CYP27A1 activity. Later, we analysed the effect of these immunosuppressants on HMGR expression in HepG2 cells, and a dose-dependent up-regulation of HMGR gene expression was observed. The results suggest that RAPA and CsA are both inhibitors of CYP27A1 activity with slightly different mechanisms and that they may accordingly increase HMGR expression.


Assuntos
Colestanotriol 26-Mono-Oxigenase/metabolismo , Colesterol/biossíntese , Ciclosporina/farmacologia , Hidroximetilglutaril-CoA Redutases/biossíntese , Imunossupressores/farmacologia , Sirolimo/farmacologia , Linhagem Celular Tumoral , Colestanotriol 26-Mono-Oxigenase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA