Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 21(6): 476-483, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31943643

RESUMO

Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin-coating deposition method, and it was found that 6-layer deposition of glycine-FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine-FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine-FeOOH nanoparticle is suitable and environmentally-friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.

2.
J Phys Chem Lett ; 10(24): 7684-7689, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31763844

RESUMO

The diffusion of lithium ions decoupled from a solid polymer electrolyte matrix is the key for high-energy electrochemical devices with the safety needed for commercial use. This Letter reports how the ion mobility in a single-phase hybrid polyelectrolyte (SPHP) matrix can be tuned by changing an inorganic coordinating atom from silicon (Si) to germanium (Ge). Nuclear Magnetic Resonance (NMR) results show that the lithium ion activation barrier in the polyelectrolyte with Si can be modulated from 0.26 eV to the unprecedented value of 0.12 eV in the polyelectrolyte with Ge. Density functional theory is used to show that the electronic structures of both polymers are very different, although their chemical structures are very similar, except for the coordinating atom. This simple chemical substitution route will certainly increase the interest in these polymers for applications in electrochemical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...