Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14603, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670032

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) are highly disseminated worldwide, and isolates co-resistant to other antimicrobial agents pose a threat to effective antimicrobial therapy. Therefore, evaluation of novel antimicrobial drugs is needed to identify potential treatments with better outcomes. We evaluated the in vitro activity of novel antimicrobial drugs/combinations against 97 KPC-producing Klebsiella pneumoniae isolates recovered from different hospitals in Brazil during 2021-2022. Clonality, resistance and virulence genes were detected by whole-genome sequencing. The majority of the isolates (54.6%) were classified as extensively drug resistant or multidrug resistant (44.3%); one isolate showed a pandrug resistance phenotype. The most active antimicrobial agents were meropenem-vaborbactam, cefiderocol, and ceftazidime-avibactam, with sensitivities higher than 90%; resistance to ceftazidime-avibactam was associated with KPC-33 or KPC-44 variants. Colistin and polymyxin B were active against 58.6% of the isolates. The 97 isolates were distributed into 17 different sequence types, with a predominance of ST11 (37.4%). Although high in vitro susceptibility rates were detected for meropenem-vaborbactam and cefiderocol, only ceftazidime-avibactam is currently available in Brazil. Our findings showed limited susceptibility to antimicrobial drugs employed for infection treatment of carbapenem-resistant K. pneumoniae, underscoring the urgent need for stringent policies for antimicrobial stewardship to preserve the activity of such drugs.


Assuntos
Lactamas , Inibidores de beta-Lactamases , Brasil , Klebsiella pneumoniae , Meropeném , Genômica , Carbapenêmicos , Cefiderocol
2.
Pathogens ; 12(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37513765

RESUMO

Pseudomonas aeruginosa, an opportunistic pathogen causing infections in immunocompromised patients, usually shows pronounced antimicrobial resistance. In recent years, the frequency of carbapenemases in P. aeruginosa has decreased, which allows use of new beta-lactams/combinations in antimicrobial therapy. Therefore, the in vitro evaluation of these drugs in contemporary isolates is warranted. We evaluated the antimicrobial susceptibility and genomic aspects of 119 clinical P. aeruginosa isolates from 24 different hospitals in Brazil in 2021-2022. Identification was performed via MALDI-TOF-MS, and antimicrobial susceptibility was identified through broth microdilution, gradient tests, or disk diffusion. Whole-genome sequencing was carried out using NextSeq equipment. The most active drug was cefiderocol (100%), followed by ceftazidime-avibactam (94.1%), ceftolozane-tazobactam (92.4%), and imipenem-relebactam (81.5%). Imipenem susceptibility was detected in 59 isolates (49.6%), and the most active aminoglycoside was tobramycin, to which 99 (83.2%) isolates were susceptible. Seventy-one different sequence types (STs) were detected, including twelve new STs described herein. The acquired resistance genes blaCTX-M-2 and blaKPC-2 were identified in ten (8.4%) and two (1.7%) isolates, respectively. Several virulence genes (exoSTUY, toxA, aprA, lasA/B, plcH) were also identified. We found that new antimicrobials are effective against the diverse P. aeruginosa population that has been circulating in Brazilian hospitals in recent years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA