Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 15(3): e0229400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32203546

RESUMO

The pathogenesis of cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is dictated mainly by the immune-mediated-tissue inflammation developed. The understanding of the immunological mechanisms that generate tissue damage or resolution of lesions is the key to the development of effective vaccine protocols and proper therapeutic schemes. It is clear that the specific immune response mediated by T cells is responsible for the beneficial outcome of the disease, however, the roles of CD4+ T, CD8+ T, NK and NKT cell subpopulations in immunopathogenesis of CL need to be elucidated. Peripheral blood cells from patients before, during and after the antimonial therapy, as well as healthy individuals (HI) were cultured with (LbAgS) or without (NS) L. braziliensis antigens (LbAg). Afterwards, the frequencies of LbAg-specific-cytotoxic CD8+ T, CD4+ T, NK and CD3+CD56+ NKT cells, as well as their activation and exhaustion profiles, were defined by flow cytometry. We observed higher frequencies of CD8+ T, NK and CD3+CD56+ NKT cells and lower frequencies of CD4+ T lymphocytes in LbAgS cell cultures from patients before treatment. The specific response to LbAg resulted in an expansion of cytotoxic-activated CD4+ T, CD8+ T, and NK cells, before and during treatment, indicating specificity in the response by these cells against L. braziliensis. Furthermore, comparing the differences of frequencies of cytotoxic-activated CD4+T, CD8+T, and NK cells, among before and during treatment patients and HI groups, we conclude that these cell populations are in charge of immune response elicited by antimonial therapy. Interestingly, we also observed that NK cells were induced by LbAg to an exhaustion profile during all clinical stages of the disease. The increased antigen-specific activation and cytotoxic activity are in line with the strong inflammatory response described in this disease, a likely cause of tissue damage. These findings reinforce the involvement of these distinct cytotoxic-activated cell populations in the immunopathogenesis of CL, showing a character of specificity in this immune response.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Adulto , Idoso , Complexo CD3/metabolismo , Antígeno CD56/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Leishmaniose Cutânea/parasitologia , Masculino , Pessoa de Meia-Idade , Linfócitos T Citotóxicos , Adulto Jovem
3.
Parasite Immunol ; 41(9): e12662, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271660

RESUMO

Plasmodium falciparum-specific antibodies tend to be short-lived, but their cognate memory B cells (MBCs) circulate in the peripheral blood of exposed subjects for several months or years after the last infection. However, the time course of antigen-specific antibodies and B-cell responses to the relatively neglected parasite Plasmodium vivax remains largely unexplored. Here, we showed that uncomplicated vivax malaria elicits short-lived antibodies but long-lived MBC responses to a major blood-stage P vivax antigen, apical membrane protein 1 (PvAMA-1), in subjects exposed to declining malaria transmission in the Amazon Basin of Brazil. We found that atypical (CD19+ CD10- CD21- CD27- ) MBCs, which appear to share a common precursor with classical MBCs but are unable to differentiate into antibody-secreting cells, significantly outnumbered classical MBCs by 5:1 in the peripheral blood of adult subjects currently or recently infected with P vivax and by 3:1 in healthy residents in the same endemic communities. We concluded that malaria can drive classical MBCs to differentiate into functionally impaired MBCs not only in subjects repeatedly exposed to P falciparum, but also in subjects living in areas with low levels of P vivax transmission in the Amazon, leading to an impaired B-cell memory that may affect both naturally acquired and vaccine-induced immunity.


Assuntos
Anticorpos Antiprotozoários/sangue , Linfócitos B/imunologia , Memória Imunológica , Malária Vivax/imunologia , Proteínas de Membrana/metabolismo , Plasmodium vivax/fisiologia , Proteínas de Protozoários/metabolismo , Adulto , Antígenos de Protozoários/imunologia , Brasil , Feminino , Humanos , Estudos Longitudinais , Malária Falciparum/imunologia , Masculino , Plasmodium falciparum/imunologia
4.
J Invertebr Pathol ; 160: 67-75, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513285

RESUMO

The immune system of snails is highly sensitive to pollutants, which can suppress its immune response. We investigated the effects of exposure to the glyphosate-based herbicide Roundup® Original on the snail Biomphalaria glabrata infected by the platyhelminth Echinostoma paraensei by evaluating changes in the snail's internal defense system. Four cohorts were studied: control group, infected snails, snails treated with Roundup®, and snails infected and treated with Roundup®. The hemocyte viability was assessed, morphological differentiation of cells was observed and flow cytometry was performed to determine the morphology, viability and the lectin expression profiles. The frequencies of dead hemocytes were lower in the infected group and higher in both pesticide treated groups. Three cell types were identified: blast-like cells, hyalinocytes and granulocytes. The highest number of all types of hemocytes, as well as the highest number of dead cells, were observed in the infected, pesticide-treated group. The association between infection and herbicide exposure greatly increased the frequency of dead hemocytes, suggesting that this condition impairs the internal defense system of B. glabrata making the snails more vulnerable to parasitic infections.


Assuntos
Biomphalaria/imunologia , Glicina/análogos & derivados , Hemócitos/citologia , Herbicidas/toxicidade , Imunidade Celular/efeitos dos fármacos , Infecções por Trematódeos/imunologia , Animais , Biomphalaria/parasitologia , Echinostoma/parasitologia , Citometria de Fluxo , Glicina/toxicidade , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Interações Hospedeiro-Parasita/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/patologia , Lectinas/efeitos dos fármacos , Lectinas/metabolismo , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...