Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 221(2)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35445706

RESUMO

The transcription factor RpoS of Escherichia coli controls many genes important for tolerance of a variety of stress conditions. IraD promotes the post-translation stability of RpoS by inhibition of RssB, an adaptor protein for ClpXP degradation. We have previously documented DNA damage induction of iraD expression, independent of the SOS response. Both iraD and rpoS are required for tolerance to DNA damaging treatments such as H2O2 and the replication inhibitor azidothymidine in the log phase of growth. Using luciferase gene fusions to the 672 bp iraD upstream region, we show here that both promoters of iraD are induced by azidothymidine. Genetic analysis suggests that both promoters are repressed by DnaA-ATP, partially dependent on a putative DnaA box at -81 bp and are regulated by regulatory inactivation of DnaA, dependent on the DnaN processivity clamp. By electrophoretic mobility shift assays, we show that purified DnaA protein binds to the iraD upstream region, so DnaA regulation of IraD is likely to be direct. DNA damage induction of iraD during log phase growth is abolished in the dnaA-T174P mutant, suggesting that DNA damage, in some way, relieves DnaA repression, possibly through the accumulation of replication clamps and enhanced regulatory inactivation of DnaA. We also demonstrate that the RNA-polymerase associated factor, stringent starvation protein A, induced by the accumulation of ppGpp, also affects iraD expression, with a positive effect on constitutive expression and a negative effect on azidothymidine-induced expression.


Assuntos
Proteínas de Bactérias , Dano ao DNA , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Recombinases Rec A/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fator sigma/genética , Zidovudina/farmacologia
2.
mBio ; 12(2)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688004

RESUMO

In Escherichia coli, DNA replication is catalyzed by an assembly of proteins, the DNA polymerase III holoenzyme. This complex includes the polymerase and proofreading subunits, the processivity clamp, and clamp loader complex. The holC gene encodes an accessory protein (known as χ) to the core clamp loader complex and is the only protein of the holoenzyme that binds to single-strand DNA binding protein, SSB. HolC is not essential for viability, although mutants show growth impairment, genetic instability, and sensitivity to DNA damaging agents. In this study, we isolate spontaneous suppressor mutants in a ΔholC strain and identify these by whole-genome sequencing. Some suppressors are alleles of RNA polymerase, suggesting that transcription is problematic for holC mutant strains, or alleles of sspA, encoding stringent starvation protein. Using a conditional holC plasmid, we examine factors affecting transcription elongation and termination for synergistic or suppressive effects on holC mutant phenotypes. Alleles of RpoA (α), RpoB (ß), and RpoC (ß') RNA polymerase holoenzyme can partially suppress loss of HolC. In contrast, mutations in transcription factors DksA and NusA enhanced the inviability of holC mutants. HolC mutants showed enhanced sensitivity to bicyclomycin, a specific inhibitor of Rho-dependent termination. Bicyclomycin also reverses suppression of holC by rpoA, rpoC, and sspA An inversion of the highly expressed rrnA operon exacerbates the growth defects of holC mutants. We propose that transcription complexes block replication in holC mutants and that Rho-dependent transcriptional termination and DksA function are particularly important to sustain viability and chromosome integrity.IMPORTANCE Transcription elongation complexes present an impediment to DNA replication. We provide evidence that one component of the replication clamp loader complex, HolC, of Escherichia coli is required to overcome these blocks. This genetic study of transcription factor effects on holC growth defects implicates Rho-dependent transcriptional termination and DksA function as critical. It also implicates, for the first time, a role of SspA, stringent starvation protein, in avoidance or tolerance of replication/replication conflicts. We speculate that HolC helps avoid or resolve collisions between replication and transcription complexes, which become toxic in HolC's absence.


Assuntos
DNA Polimerase III/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fatores de Transcrição/genética , Transcrição Gênica , Replicação Viral , Escherichia coli/crescimento & desenvolvimento , Mutação , Fenótipo , Supressão Genética
3.
Nucleic Acids Res ; 48(1): 212-230, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31665437

RESUMO

When replication forks encounter template DNA lesions, the lesion is simply skipped in some cases. The resulting lesion-containing gap must be converted to duplex DNA to permit repair. Some gap filling occurs via template switching, a process that generates recombination-like branched DNA intermediates. The Escherichia coli Uup and RadD proteins function in different pathways to process the branched intermediates. Uup is a UvrA-like ABC family ATPase. RadD is a RecQ-like SF2 family ATPase. Loss of both functions uncovers frequent and RecA-independent deletion events in a plasmid-based assay. Elevated levels of crossing over and repeat expansions accompany these deletion events, indicating that many, if not most, of these events are associated with template switching in postreplication gaps as opposed to simple replication slippage. The deletion data underpin simulations indicating that multiple postreplication gaps may be generated per replication cycle. Both Uup and RadD bind to branched DNAs in vitro. RadD protein suppresses crossovers and Uup prevents nucleoid mis-segregation. Loss of Uup and RadD function increases sensitivity to ciprofloxacin. We present Uup and RadD as genomic guardians. These proteins govern two pathways for resolution of branched DNA intermediates such that potentially deleterious genome rearrangements arising from frequent template switching are averted.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Replicação do DNA , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/deficiência , Adenosina Trifosfatases/deficiência , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Genoma Bacteriano , Plasmídeos/química , Plasmídeos/metabolismo , Origem de Replicação , Deleção de Sequência
4.
J Inorg Biochem ; 188: 96-101, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30170307

RESUMO

A strategy for elucidating sequence determinants of function in the class of cytochrome P450 (CYP) enzymes that catalyze the first steps of terpene metabolism in wild microbiomes is described. Wild organisms that can use camphor, terpineol, pinene and limonene were isolated from soils rich in coniferous waste. Cell free extracts and growth beers were analyzed by gas chromatography/mass spectrometry to identify primary oxidative metabolites. For one organism, Pseudomonas nitroreducens TPJM, a cytochrome P450 (CYP108B1) isolated from cell free extracts was demonstrated to catalyze the oxidation of α-terpineol in assays combining the native ferredoxin and putidaredoxin reductase, and the resulting oxidation products identified by gas chromatography/mass spectrometry. Shotgun sequencing of PnTPJM identified four candidate P450 genes, including an apparently fragmentary gene with a high degree of homology with the known enzyme CYP108 (P450terp).


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Pseudomonas/enzimologia , Microbiologia do Solo , Terpenos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Pseudomonas/genética , Terpenos/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(9): E2040-E2047, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440496

RESUMO

Harnessing CRISPR-Cas9 technology provides an unprecedented ability to modify genomic loci via DNA double-strand break (DSB) induction and repair. We analyzed nonhomologous end-joining (NHEJ) repair induced by Cas9 in budding yeast and found that the orientation of binding of Cas9 and its guide RNA (gRNA) profoundly influences the pattern of insertion/deletions (indels) at the site of cleavage. A common indel created by Cas9 is a 1-bp (+1) insertion that appears to result from Cas9 creating a 1-nt 5' overhang that is filled in by a DNA polymerase and ligated. The origin of +1 insertions was investigated by using two gRNAs with PAM sequences located on opposite DNA strands but designed to cleave the same sequence. These templated +1 insertions are dependent on the X-family DNA polymerase, Pol4. Deleting Pol4 also eliminated +2 and +3 insertions, which are biased toward homonucleotide insertions. Using inverted PAM sequences, we also found significant differences in overall NHEJ efficiency and repair profiles, suggesting that the binding of the Cas9:gRNA complex influences subsequent NHEJ processing. As with events induced by the site-specific HO endonuclease, CRISPR-Cas9-mediated NHEJ repair depends on the Ku heterodimer and DNA ligase 4. Cas9 events are highly dependent on the Mre11-Rad50-Xrs2 complex, independent of Mre11's nuclease activity. Inspection of the outcomes of a large number of Cas9 cleavage events in mammalian cells reveals a similar templated origin of +1 insertions in human cells, but also a significant frequency of similarly templated +2 insertions.


Assuntos
Sistemas CRISPR-Cas , Cromossomos/ultraestrutura , Quebras de DNA de Cadeia Dupla , Mutação INDEL , RNA Guia de Cinetoplastídeos , Saccharomycetales/genética , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Dimerização , Endonucleases/metabolismo , Deleção de Genes , Autoantígeno Ku , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de DNA
6.
J Bacteriol ; 191(24): 7436-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19820090

RESUMO

The antiadaptor protein IraD inhibits the proteolysis of the alternative sigma factor, RpoS, which promotes the synthesis of >100 genes during the general stress response and during stationary phase. Our previous results showed that IraD determines RpoS steady-state levels during exponential growth and mediates its stabilization after DNA damage. In this study, we show by promoter fusions that iraD was upregulated during the transition from exponential growth to stationary phase. The levels of RpoS likewise rose during this transition in a partially IraD-dependent manner. The expression of iraD was under the control of ppGpp. The expression of iraD required RelA and SpoT (p)ppGpp synthetase activities and was dramatically induced by a "stringent" allele of RNA polymerase, culminating in elevated levels of RpoS. Surprisingly, DksA, normally required for transcriptional effects of the stringent response, repressed iraD expression, suggesting that DksA can exert regulatory effects independent of and opposing those of (p)ppGpp. Northern blot analysis and 5' rapid amplification of cDNA ends revealed two transcripts for iraD in wild-type strains; the smaller was regulated positively by RelA during growth; the larger transcript was induced specifically upon transition to stationary phase and was RelA SpoT dependent. A reporter fusion to the distal promoter indicated that it accounts for growth-phase regulation and DNA damage inducibility. DNA damage inducibility occurred in strains unable to synthesize (p)ppGpp, indicating an additional mode of regulation. Our results suggest that the induction of RpoS during transition to stationary phase and by (p)ppGpp occurs at least partially through IraD.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo Celular , Proteínas de Escherichia coli/biossíntese , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Fator sigma/biossíntese , Fator sigma/metabolismo , Fusão Gênica Artificial , Northern Blotting , Perfilação da Expressão Gênica , Genes Reporter , Pirofosfatases/metabolismo , Fator de Transcrição RelA/metabolismo
7.
Proc Natl Acad Sci U S A ; 106(2): 611-6, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19124769

RESUMO

We isolated an Escherichia coli mutant in the iraD gene, sensitive to various forms of DNA damage. Our data are consistent with the function of IraD to promote accumulation of the alternative transcription sigma factor, RpoS, by binding to the adaptor RssB protein that targets RpoS for degradation. Our results demonstrate the physiological importance of this mode of regulation for DNA damage tolerance. Although RpoS is best known for its regulation of genes induced in stationary phase, our work underscores the importance of the RpoS regulon in a DNA damage response in actively growing cells. We show that iraD transcription is induced by DNA damage by a mechanism independent of the SOS response. The IraD and SOS regulatory pathways appear to act synergistically to ensure survival of cells faced with oxidative or DNA damaging stress during cellular growth.


Assuntos
Proteínas de Bactérias/fisiologia , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/fisiologia , Fator sigma/isolamento & purificação , Fator sigma/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Regulon , Resposta SOS em Genética , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...